我想访问在训练期间创建并存储在 Azure ML 服务日志中的 tfevent 文件。此 tfevent 文件可以在普通张量板上正确访问和显示,因此文件不会损坏,但是当我使用 Azure ML 的张量板库访问它时,本地张量板上没有任何显示或连接被拒绝。
我首先将它登录到 ./logs/tensorboard,就像 Azure ML 有 ./logs/azureml 但 Azure ML 的模块启动的 tensorboard 说在浏览器上没有像下面这样显示的文件。
No dashboards are active for the current data set.
Probable causes:
You haven’t written any data to your event files.
TensorBoard can’t find your event files.
If you’re new to using TensorBoard, and want to find out how to add data and set up your event files, check out the README and perhaps the TensorBoard tutorial.
If you think TensorBoard is configured properly, please see the section of the README devoted to missing data problems and consider filing an issue on GitHub.
Last reload: Wed Aug 21 2019 *****
Data location: /tmp/tmpkfj7gswu
所以我认为保存的位置不会被 AML 识别,我将保存位置更改为 ./logs 然后浏览器显示“无法访问此站点。****** 拒绝连接。”
我的 Azure ML Python SDK 版本是 1.0.57
1)我该如何解决这个问题?
2)我应该在哪里保存 tfevent 文件以便 AML 识别它?我在此处的文档中找不到有关它的任何信息。 https://docs.microsoft.com/en-us/python/api/azureml-tensorboard/azureml.tensorboard.tensorboard?view=azure-ml-py
这就是我通过 Azure ML 启动 tensorboard 的方式。
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=f'This script is to lanuch TensorBoard with '
f'accessing run history from machine learning '
f'experiments that output Tensorboard logs')
parser.add_argument('--experiment-name',
dest='experiment_name',
type=str,
help='experiment name in Azure ML')
parser.add_argument('--run-id',
dest='run_id',
type=str,
help='The filename of merged json file.')
args = parser.parse_args()
logger = get_logger(__name__)
logger.info(f'SDK Version: {VERSION}')
workspace = get_workspace()
experiment_name = args.experiment_name
run_id = args.run_id
experiment = get_experiment(experiment_name, workspace, logger)
run = get_run(experiment, run_id)
# The Tensorboard constructor takes an array of runs, so pass it in as a single-element array here
tb = Tensorboard([run])
# If successful, start() returns a string with the URI of the instance.
url = tb.start()
print(url)