0

我正在尝试创建一个程序,该程序通过心理健康术语列表运行,查看研究摘要,并计算单词或短语出现的次数。我可以用单个单词来解决这个问题,但我很难用多个单词来做到这一点。我也尝试使用 NLTK ngram,但由于心理健康列表中的单词数量各不相同(即,并非心理健康列表中的所有术语都是二元组或三元组),我也无法让它发挥作用。

我想强调一下,我知道拆分每个单词只会计算单个单词,但是,我只是坚持如何处理列表中不同数量的单词以计入摘要。

谢谢!

from collections import Counter

abstracts = ['This is a mental health abstract about anxiety and bipolar 
disorder as well as other things.', 'While this abstract is not about ptsd 
or any trauma-related illnesses, it does have a mental health focus.']

for x2 in abstracts:


    mh_terms = ['bipolar disorder', 'anxiety', 'substance abuse disorder', 
    'ptsd', 'schizophrenia', 'mental health']

    c = Counter(s.lower().replace('.', '') for s in x2.split())
    for term in mh_terms:
        term = term.replace(',','')
        term = term.replace('.','')
        xx = (term, c.get(term, 0))

    mh_total_occur = sum(c.get(v, 0) for v in mh_terms)
    print(mh_total_occur)

在我的示例中,两个摘要都计数为 1,但我想要计数为 2。

4

1 回答 1

1

问题是您永远不会匹配“心理健康”,因为您只计算由“”字符分割的单个单词的出现次数。

我不知道在这里使用计数器是否是正确的解决方案。如果您确实需要一个高度可扩展和可索引的解决方案,那么 n-gram 可能是要走的路,但对于中小型问题,使用正则表达式模式匹配应该很快。

import re

abstracts = [
    'This is a mental health abstract about anxiety and bipolar disorder as well as other things.',
    'While this abstract is not about ptsd or any trauma-related illnesses, it does have a mental health focus.'
]

mh_terms = [
    'bipolar disorder', 'anxiety', 'substance abuse disorder',
    'ptsd', 'schizophrenia', 'mental health'
]

def _regex_word(text):
    """ wrap text with special regex expression for start/end of words """
    return '\\b{}\\b'.format(text)

def _normalize(text):
    """ Remove any non alpha/numeric/space character """
    return re.sub('[^a-z0-9 ]', '', text.lower())


normed_terms = [_normalize(term) for term in mh_terms]


for raw_abstract in abstracts:
    print('--------')
    normed_abstract = _normalize(raw_abstract)

    # Search for all occurrences of chosen terms
    found = {}
    for norm_term in normed_terms:
        pattern = _regex_word(norm_term)
        found[norm_term] = len(re.findall(pattern, normed_abstract))
    print('found = {!r}'.format(found))
    mh_total_occur = sum(found.values())
    print('mh_total_occur = {!r}'.format(mh_total_occur))

我尝试添加辅助函数和注释以明确我在做什么。

使用\b正则表达式控制字符在一般用例中很重要,因为它可以防止可能的搜索词(如“miss”)匹配“dismiss”等词。

于 2019-08-16T16:18:03.373 回答