我在 TFP 中构建基本 BNN 时遇到问题。一般来说,我是 TFP 和 BNN 的新手,所以如果我错过了一些简单的事情,我深表歉意。
我可以通过执行以下操作在 Tensorflow 中训练一个基本的 NN:
model = keras.Sequential([
keras.layers.Dense(units=100, activation='relu'),
keras.layers.Dense(units=50, activation='relu'),
keras.layers.Dense(units=5, activation='softmax')
])
model.compile(optimizer=optimizer,
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
history = model.fit(
training_data.repeat(),
epochs=100,
steps_per_epoch=(X_train.shape[0]//1024),
validation_data=test_data.repeat(),
validation_steps=2
)
但是,在尝试使用 tfp DenseFlipout 层实现类似架构时遇到了麻烦:
model = keras.Sequential([
tfp.layers.DenseFlipout(units=100, activation='relu'),
tfp.layers.DenseFlipout(units=10, activation='relu'),
tfp.layers.DenseFlipout(units=5, activation='softmax')
])
model.compile(optimizer=optimizer,
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
history = model.fit(
training_data.repeat(),
epochs=100,
steps_per_epoch=(X_train.shape[0]//1024),
validation_data=test_data.repeat(),
validation_steps=2
)
我收到以下值错误:
ValueError:
Variable <tf.Variable 'sequential_11/dense_flipout_15/kernel_posterior_loc:0'
shape=(175, 100) dtype=float32> has `None` for gradient.
Please make sure that all of your ops have a gradient defined (i.e. are differentiable).
Common ops without gradient: K.argmax, K.round, K.eval.
我做了一些谷歌搜索,并查看了 TFP 文档,但不知所措,所以我想我会分享这个问题。我错过了什么明显的东西吗?
提前致谢。