“我是神经网络和 DL4j 的新手,我想用 CSV 训练神经网络并构建线性回归。如何解决这些错误“无法解析方法'.iterations 和 getFeatureMatrix()'”?
“以前我试图这样做,但在‘种子’中有另一个错误”。
import org.datavec.api.records.reader.RecordReader;
import org.datavec.api.records.reader.impl.csv.CSVRecordReader;
import org.datavec.api.split.FileSplit;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.Updater;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.evaluation.classification.Evaluation;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.io.File;
public class Data {
public static void main(String[] args) throws Exception {
参数:
int seed = 3000;
int batchSize = 200;
double learningRate = 0.001;
int nEpochs = 150;
int numInputs = 2;
int numOutputs = 2;
int numHiddenNodes = 100;
加载数据:
//load data train
RecordReader rr = new CSVRecordReader();
rr.initialize(new FileSplit(new File("train.csv")));
DataSetIterator trainIter = new RecordReaderDataSetIterator(rr, batchSize, 0, 2);
//load test data
RecordReader rrTest = new CSVRecordReader();
rr.initialize(new FileSplit(new File("test.csv")));
DataSetIterator testIter = new RecordReaderDataSetIterator(rrTest, batchSize, 0, 2);
网络配置:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(1000)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.learningRate(learningRate)
.updater(Updater.NESTEROVS).momentum(0.9)
.list()
.layer(0, new DenseLayer.Builder()
.nIn(numInputs)
.nOut(numHiddenNodes)
.weightInit(WeightInit.XAVIER)
.activation(Activation.fromString("relu"))
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.weightInit(WeightInit.XAVIER)
.activation(Activation.fromString("softmax"))
.weightInit(WeightInit.XAVIER)
.nIn(numHiddenNodes)
.nOut(numOutputs)
.build()
)
.pretrain(false).backprop(true).build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener((15)));
for (int n = 0; n < nEpochs; n++) {
model.fit((trainIter));
System.out.println(("--------------eval model"));
Evaluation eval = new Evaluation(numOutputs);
while (testIter.hasNext()) {
DataSet t = testIter.next();
INDArray features = getFeatureMatrix();
INDArray lables = t.getLabels();
INDArray predicted = model.output(features, false);
eval.eval(lables, predicted);
}
System.out.println(eval.stats());
}
}
}