0

在执行示例代码时,我遇到以下问题:“RuntimeError:管道尚未优化。请先调用 fit()。

Python 中 TPOT 自动机器学习的问题。我正在尝试举例:数据集 2:蘑菇分类(https://towardsdatascience.com/tpot-automated-machine-learning-in-python-4c063b3e5de9

源代码: https ://www.kaggle.com/discdiver/tpot-mushroom-classification-task/

我试图改变 tpot.fit (X_train, y_train) 的位置,但并没有解决问题。

图书馆

import time
import gc
import pandas as pd
import numpy as np
import seaborn as sns
import timeit
import plotly.offline as py
import plotly.graph_objs as go
py.init_notebook_mode(connected=True)
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(font_scale=1.5, palette="colorblind")
import category_encoders

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split

from tpot import TPOTClassifier

# Read data
df_cogumelo = pd.read_csv('agaricus-lepiota.csv')  

# Visualization
pd.options.display.max_columns = 200
pd.options.display.width = 200

# separate out X
X = df_cogumelo.reindex(columns=[x for x in df_cogumelo.columns.values if x != 'class']) 

X = X.apply(LabelEncoder().fit_transform)

# separate out y
y = df_cogumelo.reindex(columns=['class'])   
print(y['class'].value_counts())
y = np.ravel(y)                     # flatten the y array
y = LabelEncoder().fit_transform(y)


X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, test_size=0.25, random_state=10) 


print(X_train.describe())
print("\n\n\n")
print(X_train.info())

# generation and population_size determine how many populations are made.

tpot = TPOTClassifier(verbosity=3, 
                  scoring="accuracy", 
                  random_state=10, 
                  periodic_checkpoint_folder="tpot_mushroom_results", 
                  n_jobs=-1, 
                  generations=2, 
                  population_size=10, use_dask=True) #use_dask=True

times = []
scores = []
winning_pipes = []

# run several fits 
for x in range(10):
start_time = timeit.default_timer()

tpot.fit(X_train, y_train)

elapsed = timeit.default_timer() - start_time
times.append(elapsed)

winning_pipes.append(tpot.fitted_pipeline_)

scores.append(tpot.score(X_test, y_test))
tpot.export('tpot_mushroom.py')


# output results
times = [time/60 for time in times]
print('Times:', times)
print('Scores:', scores)   
print('Winning pipelines:', winning_pipes)

#The expected result is as follows: 
#https://www.kaggle.com/discdiver/tpot-#mushroom-classification-task/
4

2 回答 2

0

删除“use_dask=True”为我解决了这个错误。

于 2020-09-07T10:59:36.727 回答
-1

你的问题不是代码而是你的数据。该蘑菇数据集没有标题行。进入文件并插入新的第一行并标记列(无关紧要),确保最后一列命名为“类”(小写 c)。那应该可以解决问题。如果您查看输出,当您打印 y['class'] 计数时,您会得到无。如果您已经正确添加了标签,请发送输出堆栈跟踪。

于 2020-03-17T16:50:44.367 回答