1

我一直在努力继续语音识别一个月,我找到了hmmlearn包。我可以使用_model = hmm.GMMHMM(...)和创建我的音素模型_model.fit(...)。但是当我想使用 _model.score(_extracted_test_features) 测试样本时,我得到了这个错误:

.format(self.covariance_type)) ValueError: 'diag' mix covars must be non-negative

这是我的代码:

    def Main():
        # ---
        _phoneme_files_dir = './database_info/phonemes/phoneme_files/'
        _phoneme_dataset_dir = './database_info/phonemes/extracted_features/'
        _phoneme_models_dir = './database_info/phonemes/models/'
        _phoneme_test = '/home/ali/speech_recognition/database/database_english/timit/data/lisa/data/timit/raw/TIMIT/TEST/DR1/FAKS0/SA1.wav'
        # ---
        _phoneme_test_features = ExtractFeatures(_phoneme_test, 9640, 11240)
        _phoneme_models, _phoneme_models_list_loaded = LoadModels(_phoneme_models_dir)
        print("Getting models has successfully done")
        # ---
        _score_list = {}
        for _model_label in _phoneme_models.keys():
            _model = _phoneme_models[_model_label][0]
            _score = _model.score(_phoneme_test_features)
            _score_list[_model_label] = _score
        _predict = max(_score_list, key=_score_list.get)
        print("predict result phoneme is ", _phoneme_models_list_loaded[_predict])

有人知道这个错误吗?我找到了一些解决方案,但它们是几年前的,之后 hmmlearn 包得到了一些更新并修复了它们。

4

1 回答 1

1

通常这意味着某些音素在训练期间没有足够的数据,并且您的模型没有正确训练。你需要很多大于 100 的样本来训练,只有几个样本是行不通的。

您可以打印模型值以检查哪些是负数。

最好使用 kaldi 或 espnet 等专业工具包进行语音训练,HMMlearn 不是正确的工具,它没有正确实现语音。

于 2019-08-24T19:40:34.023 回答