我有一个二进制图像,我想使用 opencv python 从图像中删除小白点。您可以在此处参考我的问题在此处输入链接描述
我的原始图像是
我希望输出图像为:
这似乎可以在 Python Opencv 中使用连接的组件。
#!/bin/python3.7
import cv2
import numpy as np
src = cv2.imread('img.png', cv2.IMREAD_GRAYSCALE)
# convert to binary by thresholding
ret, binary_map = cv2.threshold(src,127,255,0)
# do connected components processing
nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_map, None, None, None, 8, cv2.CV_32S)
#get CC_STAT_AREA component as stats[label, COLUMN]
areas = stats[1:,cv2.CC_STAT_AREA]
result = np.zeros((labels.shape), np.uint8)
for i in range(0, nlabels - 1):
if areas[i] >= 100: #keep
result[labels == i + 1] = 255
cv2.imshow("Binary", binary_map)
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("Filterd_result.png, result)
看这里
您可以简单地使用图像平滑技术(如高斯模糊等)来去除图像中的噪声,然后进行如下二进制阈值处理:
img = cv2.imread("your-image.png",0)
blur = cv2.GaussianBlur(img,(13,13),0)
thresh = cv2.threshold(blur, 100, 255, cv2.THRESH_BINARY)[1]
cv2.imshow('original', img)
cv2.imshow('output', thresh)
cv2.waitKey(0)
cv2.destroyAllWinsdows()
输出:
从这里了解不同的图像平滑/模糊技术。
您可以使用closing
函数 - 先腐蚀后膨胀。它不需要模糊功能。
import cv2 as cv
import numpy as np
img = cv.imread('original',0)
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
cv2.imshow('original', img)
cv2.imshow('output', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()