有时它很适合dask.dataframe.map_partitions
用于合并等操作。在某些情况下,在 aleft_df
和 a right_df
using之间进行合并时map_partitions
,我想在执行合并之前进行预缓存right_df
,以减少网络开销/本地改组。有什么明确的方法可以做到这一点吗?感觉应该可以使用 , 或其他一些智能广播中的一个或client.scatter(the_df)
组合client.run(func_to_cache_the_df)
。
left_df
在对一个大得多的大的right_df
(本质上是一个查找表)进行左连接的情况下,这一点尤为突出。感觉这right_df
应该能够读入内存并持久化/分散到合并前的所有工作人员/分区,以减少对跨分区通信的需求,直到最后。我怎样才能分散right_df
成功地做到这一点?
以下是使用 cuDF 和 Dask 进行这种不平衡合并的一个较小示例(但从概念上讲,这与 pandas 和 Dask 相同):
import pandas as pd
import cudf
import dask_cudf
import numpy as np
from dask.distributed import Client
from dask_cuda import LocalCUDACluster
# create a local CUDA cluster
cluster = LocalCUDACluster()
client = Client(cluster)
np.random.seed(12)
nrows_left = 1000000
nrows_right = 1000
left = cudf.DataFrame({'a': np.random.randint(0,nrows_right,nrows_left), 'left_value':np.arange(nrows_left)})
right = cudf.DataFrame({'a': np.arange(nrows_right), 'lookup_val': np.random.randint(0,1000,nrows_right)})
print(left.shape, right.shape) # (1000000, 2) (1000, 2)
ddf_left = dask_cudf.from_cudf(left, npartitions=500)
ddf_right = dask_cudf.from_cudf(right, npartitions=2)
def dask_merge(L, R):
return L.merge(R, how='left', on='a')
result = ddf_left.map_partitions(dask_merge, R=ddf_right).compute()
result.head()
<cudf.DataFrame ncols=3 nrows=5 >
a left_value lookup_val
0 219 1952 822
1 873 1953 844
2 908 1954 142
3 290 1955 810
4 863 1956 910