假设我有一个如下数据集:
set.seed(1)
TDT <- data.table(Country = c(rep("A",30),rep("B",50), rep("C",20)),
Id = c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),rep(5,20)),
Time = rep(seq(as.Date("2010-01-03"), length=20, by="1 month") - 1,5),
norm = round(runif(100)/10,2),
Income = sample(100,100),
Happiness = sample(10,10),
Sex = round(rnorm(10,0.75,0.3),2),
Age = round(rnorm(10,0.75,0.3),2),
Educ = round(rnorm(10,0.75,0.3),2))
TDT [, ID := .I]
有一篇论文发表在公共经济学杂志上,名为:收入的边际效用,由 Layard、Nickell 和 Mayraz 撰写。rho
他们在公式中使用最大似然估计:
h = happiness
alpha = country
y = income
rho = risk aversion
t = Time
j = ID
gamma = individual fixed effect
我想使用glm
R 中的包来做类似的事情。但是,我不确定如何将此公式写入glm
函数。有没有人有这方面的经验?
rho
这个想法是使用0.1 - 3 范围内的起始值,增量为 0.1。
start_rho <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6, 1.7, 1.8 ,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3)