5

我已经安装了:

  • Ubuntu (18.04)
  • 蟒蛇(3.6.8)
  • msodbcsql17(用于 SQL Server 的 Microsoft ODBC 驱动程序 17)
  • SQLAlchemy (1.3.5)
  • 熊猫 (0.24.2)

我只想使用带有 Azure SQL 数据仓库的 SQLAlchemy 创建概念证明。但是,当我尝试在使用代码映射到客户视图表的客户模型上运行查询时:

import urllib

from sqlalchemy import create_engine
from sqlalchemy import Column, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

db_username = 'username'
db_password = 'password'
db_database = 'dbname'
db_hostname = 'dbhost'
db_driver = 'ODBC Driver 17 for SQL Server'
db_port = '1433'

db_connectionString = f"DRIVER={{{db_driver}}}; SERVER={{{db_hostname}}}; DATABASE={{{db_database}}}; UID={{{db_username}}}; PWD={{{db_password}}}; PORT={{{db_port}}};"

engine_params = urllib.parse.quote_plus(db_connectionString)

engine = create_engine(f"mssql+pyodbc:///?odbc_connect={engine_params}", echo=True)

Base = declarative_base()

class Customer(Base):
    __tablename__ = 'customers'

    id = Column('Customer_ID', Integer, primary_key=True)

Session = sessionmaker(bind=engine)
session = Session()

customers_count = session.query(Customer).count()

session.close()

抛出以下异常:

ProgrammingError: (pyodbc.ProgrammingError) ('42000', '[42000] [Microsoft][ODBC Driver 17 for SQL Server][SQL Server]111214;An attempt to complete a transaction has failed. No corresponding transaction found. (111214) (SQLEndTran)

请记住,我可以将 SQLAlchemy 的引擎与 pandas 一起使用并运行本机 SQL 查询,例如:

data_frame = pandas.read_sql("SELECT COUNT(*) FROM customers", engine)

但是,我需要使用 SQLAlchemy 的高级查询 API:

customers_count = session.query(Customer).count()

任何帮助将非常感激。

4

1 回答 1

5
于 2021-10-06T21:36:52.977 回答