我需要将单词分类为它们的词性。像动词、名词、副词等。我用
nltk.word_tokenize() #to identify word in a sentence
nltk.pos_tag() #to identify the parts of speech
nltk.ne_chunk() #to identify Named entities.
输出是一棵树。例如
>>> sentence = "I am Jhon from America"
>>> sent1 = nltk.word_tokenize(sentence )
>>> sent2 = nltk.pos_tag(sent1)
>>> sent3 = nltk.ne_chunk(sent2, binary=True)
>>> sent3
Tree('S', [('I', 'PRP'), ('am', 'VBP'), Tree('NE', [('Jhon', 'NNP')]), ('from', 'IN'), Tree('NE', [('America', 'NNP')])])
当访问这棵树中的元素时,我做了如下:
>>> sent3[0]
('I', 'PRP')
>>> sent3[0][0]
'I'
>>> sent3[0][1]
'PRP'
但是在访问命名实体时:
>>> sent3[2]
Tree('NE', [('Jhon', 'NNP')])
>>> sent3[2][0]
('Jhon', 'NNP')
>>> sent3[2][1]
Traceback (most recent call last):
File "<pyshell#121>", line 1, in <module>
sent3[2][1]
File "C:\Python26\lib\site-packages\nltk\tree.py", line 139, in __getitem__
return list.__getitem__(self, index)
IndexError: list index out of range
我得到了上述错误。
我想要的是将输出作为类似于之前的“PRP”的“NE”,所以我无法识别哪个单词是命名实体。有没有办法在 python 中使用 NLTK 来做到这一点?如果是这样,请发布命令。还是树库中有一个函数可以做到这一点?我需要节点值“NE”