我mlflow
在此示例中描述的 docker 环境中使用,并以mlflow run .
.
我得到这样的输出
2019/07/17 16:08:16 INFO mlflow.projects: === Building docker image mlflow-myproject-ab8e0e4 ===
2019/07/17 16:08:18 INFO mlflow.projects: === Created directory /var/folders/93/xt2vz36s7jd1fh9bkhkk9sgc0000gn/T/tmp1lxyqqw9 for downloading remote URIs passed to arguments of type 'path' ===
2019/07/17 16:08:18 INFO mlflow.projects: === Running command 'docker run
--rm -v /Users/foo/bar/mlruns:/mlflow/tmp/mlruns -e
MLFLOW_RUN_ID=ef21de61d8a6436b97b643e5cee64ae1 -e MLFLOW_TRACKING_URI=file:///mlflow/tmp/mlruns -e MLFLOW_EXPERIMENT_ID=0 mlflow-myproject-ab8e0e4 python train.py' in run with ID 'ef21de61d8a6436b97b643e5cee64ae1' ===
我想my_docker_volume
在路径上挂载一个命名为容器的 docker 卷/data
。所以代替docker run
上面显示的,我想使用
docker run --rm --mount source=my_docker_volume,target=/data -v /Users/foo/bar/mlruns:/mlflow/tmp/mlruns -e MLFLOW_RUN_ID=ef21de61d8a6436b97b643e5cee64ae1 -e MLFLOW_TRACKING_URI=file:///mlflow/tmp/mlruns -e MLFLOW_EXPERIMENT_ID=0 mlflow-myproject-ab8e0e4 python train.py
我看到原则上我可以在没有安装卷的情况下运行一次,然后复制docker run ...
并添加--mount source=my_volume,target=/data
,但我宁愿使用类似的东西
mlflow run --mount source=my_docker_volume,target=/data .
但这显然不起作用,因为 --mount 不是
mlflow run
. 那么安装 docker 卷的推荐方法是什么?