我正在编写一个模拟,它创建 10,000 个周期,每组 25 组,每组由 48 次抛硬币组成。此代码中的某些内容使其运行非常缓慢。它已经运行了至少 20 分钟,并且仍在工作。R 中的类似模拟在 10 秒内运行。
这是我正在使用的python代码:
import pandas as pd
from random import choices
threshold=17
all_periods = pd.DataFrame()
for i in range(10000):
simulated_period = pd.DataFrame()
for j in range(25):
#Data frame with 48 weeks as rows. Each run through loop adds one more year as column until there are 25
simulated_period = pd.concat([simulated_period, pd.DataFrame(choices([1, -1], k=48))],\
ignore_index=True, axis=1)
positives = simulated_period[simulated_period==1].count(axis=1)
negatives = simulated_period[simulated_period==-1].count(axis=1)
#Combine positives and negatives that are more than the threshold into single dataframe
sig = pd.DataFrame([[sum(positives>=threshold), sum(negatives>=threshold)]], columns=['positive', 'negative'])
sig['total'] = sig['positive'] + sig['negative']
#Add summary of individual simulation to the others
all_periods = pd.concat([all_periods, sig])
如果有帮助,这里是快速运行的 R 脚本:
flip <- function(threshold=17){
#threshold is min number of persistent results we want to see. For example, 17/25 positive or 17/25 negative
outcomes <- c(1, -1)
trial <- do.call(cbind, lapply(1:25, function (i) sample(outcomes, 48, replace=T)))
trial <- as.data.frame(t(trial)) #48 weeks in columns, 25 years in rows.
summary <- sapply(trial, function(x) c(pos=length(x[x==1]), neg=length(x[x==-1])))
summary <- as.data.frame(t(summary)) #use data frame so $pos/$neg can be used instead of [1,]/[2,]
sig.pos <- length(summary$pos[summary$pos>=threshold])
sig.neg <- length(summary$neg[summary$neg>=threshold])
significant <- c(pos=sig.pos, neg=sig.neg, total=sig.pos+sig.neg)
return(significant)
}
results <- do.call(rbind, lapply(1:10000, function(i) flip(threshold)))
results <- as.data.frame(results)
谁能告诉我我在 python 中运行的是什么减慢了进程?谢谢你。