我正在尝试使用 nvprof 来监控 GPU 的性能。我想知道 HtoD(主机到设备)、DtoH(设备到主机)和设备执行的耗时。它与 numba cuda 网站的标准代码配合得很好:
from numba import cuda
@cuda.jit
def add_kernel(x, y, out):
tx = cuda.threadIdx.x # this is the unique thread ID within a 1D block
ty = cuda.blockIdx.x # Similarly, this is the unique block ID within the 1D grid
block_size = cuda.blockDim.x # number of threads per block
grid_size = cuda.gridDim.x # number of blocks in the grid
start = tx + ty * block_size
stride = block_size * grid_size
# assuming x and y inputs are same length
for i in range(start, x.shape[0], stride):
out[i] = x[i] + y[i]
if __name__ == "__main__":
import numpy as np
n = 100000
x = np.arange(n).astype(np.float32)
y = 2 * x
out = np.empty_like(x)
threads_per_block = 128
blocks_per_grid = 30
add_kernel[blocks_per_grid, threads_per_block](x, y, out)
print(out[:10])
这是来自 nvprfo 的结果:
但是,当我使用以下代码添加多处理的用法时:
import multiprocessing as mp
from numba import cuda
def fun():
@cuda.jit
def add_kernel(x, y, out):
tx = cuda.threadIdx.x # this is the unique thread ID within a 1D block
ty = cuda.blockIdx.x # Similarly, this is the unique block ID within the 1D grid
block_size = cuda.blockDim.x # number of threads per block
grid_size = cuda.gridDim.x # number of blocks in the grid
start = tx + ty * block_size
stride = block_size * grid_size
# assuming x and y inputs are same length
for i in range(start, x.shape[0], stride):
out[i] = x[i] + y[i]
import numpy as np
n = 100000
x = np.arange(n).astype(np.float32)
y = 2 * x
out = np.empty_like(x)
threads_per_block = 128
blocks_per_grid = 30
add_kernel[blocks_per_grid, threads_per_block](x, y, out)
print(out[:10])
return out
# check gpu condition
p = mp.Process(target = fun)
p.daemon = True
p.start()
p.join()
nvprof 似乎在监视该过程,但它没有任何结果,尽管它报告 nvprof 正在分析:
此外,当我使用 Ray(用于进行分布式计算的包)时:
if __name__ == "__main__":
import multiprocessing
def fun():
from numba import cuda
import ray
@ray.remote(num_gpus=1)
def call_ray():
@cuda.jit
def add_kernel(x, y, out):
tx = cuda.threadIdx.x # this is the unique thread ID within a 1D block
ty = cuda.blockIdx.x # Similarly, this is the unique block ID within the 1D grid
block_size = cuda.blockDim.x # number of threads per block
grid_size = cuda.gridDim.x # number of blocks in the grid
start = tx + ty * block_size
stride = block_size * grid_size
# assuming x and y inputs are same length
for i in range(start, x.shape[0], stride):
out[i] = x[i] + y[i]
import numpy as np
n = 100000
x = np.arange(n).astype(np.float32)
y = 2 * x
out = np.empty_like(x)
threads_per_block = 128
blocks_per_grid = 30
add_kernel[blocks_per_grid, threads_per_block](x, y, out)
print(out[:10])
return out
ray.shutdown()
ray.init(redis_address = "***")
out = ray.get(call_ray.remote())
# check gpu condition
p = multiprocessing.Process(target = fun)
p.daemon = True
p.start()
p.join()
nvprof 没有显示任何内容!它甚至没有显示 nvprof 正在分析进程的行(但代码确实已执行):
有谁知道如何解决这个问题?或者我还有其他选择来获取这些数据以进行分布式计算吗?