3

给定诸如电力消耗、太阳能电池板发电量、价格等输入(在给定时间 t),我们有一个电池,我们想要评估在任何给定时间它应该(dis)/充电多少。问题可以表述如下:

Pt = price of electricity at time t

Lt = consumption of electricity at time t

Zt = charge of battery at time t (how much is in the battery)

St = Electricity generated from solar generator at time t

Qt = amount the battery (dis)/charges at time t

我们试图优化的功能是 Ct = Pt *(Lt - St - Qt)

这样做的目的是尽量减少购买的电量

具有以下约束:

Lt - St - Qt >= 0 (our demand has to be non-negative)

Qmin <= Qt <= Qmax ( the battery can only (dis)/charge between certain values at any given time)

Zmin <= Zt <= Zmax. (the battery has to be within its capacity, i.e. you can't discharge more than the battery holders, and you can charge more than the battery can hold)

Zt+1 = Zt + Qt+1 ( this means that the battery level at the next time step is equal to the battery level at the previous time step plus the amount that was (dis)/charged from the battery)

我遇到的问题是如何在 python (Scipy) 中制定问题,特别是更新电池电量。

我知道存在其他图书馆(Pyomo,Pulp),欢迎使用其中的解决方案。

4

2 回答 2

4

你很幸运,Giorgio 的回答激励我学习 pyomo(我主要使用 PULP),所以用你的问题作为确保我理解所有界面的机会。我会把它贴在这里,以便将来我自己可以再次找到它:

import pyomo.environ as pyomo
import numpy as np

# create model
m = pyomo.ConcreteModel()

# Problem DATA
T = 24

Zmin = 0.0
Zmax = 2.0

Qmin = -1.0
Qmax = 1.0

# Generate prices, solar output and load signals
np.random.seed(42)
P = np.random.rand(T)*5.0
S = np.random.rand(T)
L = np.random.rand(T)*2.0

# Indexes
times = range(T)
times_plus_1 = range(T+1)

# Decisions variables
m.Q = pyomo.Var(times, domain=pyomo.Reals)
m.Z = pyomo.Var(times_plus_1, domain=pyomo.NonNegativeReals)

# objective
cost = sum(P[t]*(L[t] - S[t] - m.Q[t]) for t in times)
m.cost = pyomo.Objective(expr = cost, sense=pyomo.minimize)

# constraints
m.cons = pyomo.ConstraintList()
m.cons.add(m.Z[0] == 0.5*(Zmin + Zmax))

for t in times:
    m.cons.add(pyomo.inequality(Qmin, m.Q[t], Qmax))
    m.cons.add(pyomo.inequality(Zmin, m.Z[t], Zmax))
    m.cons.add(m.Z[t+1] == m.Z[t] - m.Q[t])
    m.cons.add(L[t] - S[t] - m.Q[t] >= 0)

# solve
solver = pyomo.SolverFactory('cbc')
solver.solve(m)

# display results
print("Total cost =", m.cost(), ".")

for v in m.component_objects(pyomo.Var, active=True):
    print ("Variable component object",v)
    print ("Type of component object: ", str(type(v))[1:-1]) # Stripping <> for nbconvert
    varobject = getattr(m, str(v))
    print ("Type of object accessed via getattr: ", str(type(varobject))[1:-1])

    for index in varobject:
        print ("   ", index, varobject[index].value)
于 2019-07-13T22:18:00.760 回答
3

以我的经验(线性/ MIP)优化是此类应用程序的有效方法。在我看来(意见,是的),Pyomo 是一个很棒的工具:

  • 它是用 Python 编写的
  • 整体设计很棒
  • 它具有其他建模语言(AMPL、GAMS...)中最常见的功能
  • 它为大多数求解器提供简单的界面
  • 它维护得很好(查看 Github 页面)

文档非常广泛,托管在此处: https ://pyomo.readthedocs.io/en/latest/index.html

您可以在此处找到更多材料: https ://pyomo.readthedocs.io/en/latest/tutorial_examples.html

此外,是对 Pyomo 相当广泛的介绍的链接,它涉及到相当高级的主题,例如随机优化和双层问题。

最后,您的情况的唯一具体问题是您可能希望将损失应用于电池的充电和放电。提醒一下,为充电和放电定义两个独立变量(它们都是非负的)可能是一个好主意,这样您就可以将电池的能量平衡写成连接能量状态 (SOE) 的约束)t与 SOE 的时间t+1

祝你好运!

于 2019-07-11T22:50:51.710 回答