我正在制作一个逻辑回归模型来进行情绪分析。这就是问题所在 -ValueError: Found input variables with inconsistent numbers of samples: [32979, 21602]
当我尝试将数据集拆分为 x 和 y 训练集和有效集时,就会发生这种情况。
# splitting data into training and validation set
xtrain_bow, xvalid_bow, ytrain, yvalid = train_test_split(train_bow, train['label'], test_size=0.3, random_state=42)
lreg = LogisticRegression() # training the model
lreg.fit(xtrain_bow, ytrain)
prediction = lreg.predict_proba(xvalid_bow) # predicting on the validation set
prediction_int = prediction[:,1] >= 0.3 # if prediction is greater than or equal to 0.3 than 1 else 0
prediction_int = prediction_int.astype(np.int)
f1_score(yvalid, prediction_int) # calculating f1 score for the validation set
我在一些帖子中看到它可能由于 X 和 y 的形状而发生,因此打印出数据集的形状,我将数据集分成 85% 用于训练,其余用于测试/有效目的。
# Extracting train and test BoW features
split_frac = 0.85
split_num = int(len(combi['tidy_tweet']) * split_frac)
train_bow = bow[:split_num,:]
test_bow = bow[split_num:,:]
print(train_bow.shape)
print(test_bow.shape)
print(train['label'].shape)
(32979, 1000)
(5820, 1000)
(21602,)
问题也出在这一行 -
----> 1 xtrain_bow, xvalid_bow, ytrain, yvalid = train_test_split(train_bow, train['label'], test_size=0.3, random_state=42)
2 lreg = LogisticRegression() # training the model
3 lreg.fit(xtrain_bow, ytrain)
现在我一无所知,究竟是什么导致了这个问题?你们能帮忙吗?提前致谢。