3

我正在使用不平衡学习对我的数据进行过采样。我想知道使用过采样方法后每个类中有多少条目。此代码运行良好:

import imblearn.over_sampling import SMOTE
from collections import Counter

def oversample(x_values, y_values):
    oversampler = SMOTE(random_state=42, n_jobs=-1)
    x_oversampled, y_oversampled = oversampler.fit_resample(x_values, y_values)
    print("Oversampling training set from {0} to {1} using {2}".format(dict(Counter(y_values)), dict(Counter(y_over_sampled)), oversampling_method))
    return x_oversampled, y_oversampled

但我转而使用管道,因此我可以使用 GridSearchCV 找到最佳的过采样方法(ADASYN、SMOTE 和 BorderlineSMOTE)。因此,我从来没有真正自己调用 fit_resample 并使用以下方式丢失我的输出:

from imblearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestClassifier

pipe = Pipeline([('scaler', MinMaxScaler()), ('sampler', SMOTE(random_state=42, n_jobs=-1)), ('estimator', RandomForestClassifier())])
pipe.fit(x_values, y_values)

上采样有效,但我失去了关于训练集中每个类有多少条目的输出。

有没有办法获得与使用管道的第一个示例类似的输出?

4

1 回答 1

2

理论上是的。当拟合过采样器时,会创建一个属性,其中包含调用sampling_strategy_时要生成的少数类的样本数。fit_resample您可以使用它来获得与上面示例类似的输出。这是基于您的代码的修改示例:

# Imports
from collections import Counter
from sklearn.datasets import make_classification
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestClassifier
from imblearn.over_sampling import SMOTE    
from imblearn.pipeline import Pipeline

# Create toy dataset
X, y = make_classification(weights=[0.20, 0.80], random_state=0)
init_class_distribution = Counter(y)
min_class_label, _ = init_class_distribution.most_common()[-1]
print(f'Initial class distribution: {dict(init_class_distribution)}')

# Create and fit pipeline
pipe = Pipeline([('scaler', MinMaxScaler()), ('sampler', SMOTE(random_state=42, n_jobs=-1)), ('estimator', RandomForestClassifier(random_state=23))])
pipe.fit(X, y)
sampling_strategy = dict(pipe.steps).get('sampler').sampling_strategy_
expected_n_samples = sampling_strategy.get(min_class_label)
print(f'Expected number of generated samples: {expected_n_samples}')

# Fit and resample over-sampler pipeline
 sampler_pipe = Pipeline(pipe.steps[:-1])
X_res, y_res = sampler_pipe.fit_resample(X, y)
actual_class_distribution = Counter(y_res)
print(f'Actual class distribution: {actual_class_distribution}')
于 2019-08-17T13:40:00.730 回答