1

Hi我看到了一个计算数字不同素数的在线答案,它看起来不是最优的。所以我试图改进它,但在一个简单的基准测试中,我的变体比原来的要慢得多。

该算法计算一个数字的不同质因数。原始使用 HashSet 来收集因子,然后使用 size 来获取它们的数量。我的“改进”版本使用一个 int 计数器,并将 while 循环分解为 if/while 以避免不必要的调用。

更新:tl/dr(有关详细信息,请参阅接受的答案)

原始代码有一个性能错误调用 Math.sqrt 编译器修复了不必要的:

int n = ...;
// sqrt does not need to be recomputed if n does not change
for (int i = 3; i <= Math.sqrt(n); i += 2) {
    while (n % i == 0) {
        n /= i;
    }
}

编译器优化了 sqrt 调用,使其仅在 n 更改时发生。但是通过使循环内容更复杂一些(虽然没有功能变化),编译器停止了优化,并且在每次迭代时都会调用 sqrt。

原始问题

public class PrimeFactors {

    // fast version, takes 10s for input 8
    static int countPrimeFactorsSet(int n) {
        Set<Integer> primeFactorSet = new HashSet<>();
        while (n % 2 == 0) {
            primeFactorSet.add(2);
            n /= 2;
        }
        for (int i = 3; i <= Math.sqrt(n); i += 2) {
            while (n % i == 0) {
                primeFactorSet.add(i);
                n /= i;
            }
        }
        if (n > 2) {
            primeFactorSet.add(n);
        }
        return primeFactorSet.size();
    }

    // slow version, takes 19s for input 8
    static int countPrimeFactorsCounter(int n) {
        int count = 0; // using simple int
        if (n % 2 == 0) {
            count ++; // only add on first division
            n /= 2;
            while (n % 2 == 0) {
                n /= 2;
            }
        }
        for (int i = 3; i <= Math.sqrt(n); i += 2) {
            if (n % i == 0) {
                count++; // only add on first division
                n /= i;
                while (n % i == 0) {
                    n /= i;
                }
            }
        }
        if (n > 2) {
            count++;
        }
        return count;
    }

    static int findNumberWithNPrimeFactors(final int n) {
        for (int i = 3; ; i++) {
            // switch implementations
            if (countPrimeFactorsCounter(i) == n) {
            // if (countPrimeFactorsSet(i) == n) {
                return i;
            }
        }
    }

    public static void main(String[] args) {
        findNumberWithNPrimeFactors(8); // benchmark warmup
        findNumberWithNPrimeFactors(8);
        long start = System.currentTimeMillis();
        int result = findNumberWithNPrimeFactors(n);
        long duration = System.currentTimeMillis() - start;

        System.out.println("took ms " + duration + " to find " + result);
    }
}

原始版本的输出始终在 10 秒左右(在 java8 上),而“优化”版本接近 20 秒(都打印相同的结果)。实际上,只需将单个 while 循环更改为包含 while 循环的 if 块,就已经将原始方法的速度减慢了一半。

使用-Xint解释模式运行JVM,优化后的版本运行速度提高了3倍。Using-Xcomp使两个实现以相似的速度运行。因此,与具有简单 int 计数器的版本相比,JIT 似乎可以使用单个 while 循环和 HashSet 优化版本。

一个适当的微基准测试(如何在 Java 中编写一个正确的微基准测试?)会告诉我其他信息吗?有没有我忽略的性能优化原则(例如Java 性能提示)?

4

4 回答 4

4

我将您的示例转换为JMH 基准以进行公平测量,实际上该set变体的出现速度是以下的两倍counter

Benchmark              Mode  Cnt     Score    Error   Units
PrimeFactors.counter  thrpt    5   717,976 ±  7,232  ops/ms
PrimeFactors.set      thrpt    5  1410,705 ± 15,894  ops/ms

为了找出原因,我使用内置-prof xperfasm分析器重新运行了基准测试。碰巧该counter方法花费了超过 60%vsqrtsd的时间执行指令——显然,Math.sqrt(n).

  0,02%   │  │  │     │  0x0000000002ab8f3e: vsqrtsd %xmm0,%xmm0,%xmm0    <-- Math.sqrt
 61,27%   │  │  │     │  0x0000000002ab8f42: vcvtsi2sd %r10d,%xmm1,%xmm1

同时该set方法最热门的指令是编译idiv结果。n % i

             │  │ ││  0x0000000002ecb9e7: idiv   %ebp               ;*irem
 55,81%      │  ↘ ↘│  0x0000000002ecb9e9: test   %edx,%edx

Math.sqrt操作缓慢并不奇怪。但是为什么在第一种情况下执行得更频繁呢?

线索是您在优化期间所做的代码的转换。您将一个简单的while循环包装到一个额外的if块中。这使得控制流更加复杂,因此 JIT 无法将Math.sqrt计算提升到循环之外,并且必须在每次迭代时重新计算。

我们需要帮助 JIT 编译器来恢复性能。让我们手动将计算提升Math.sqrt到循环之外。

    static int countPrimeFactorsSet(int n) {
        Set<Integer> primeFactorSet = new HashSet<>();
        while (n % 2 == 0) {
            primeFactorSet.add(2);
            n /= 2;
        }
        double sn = Math.sqrt(n);  // compute Math.sqrt out of the loop
        for (int i = 3; i <= sn; i += 2) {
            while (n % i == 0) {
                primeFactorSet.add(i);
                n /= i;
            }
            sn = Math.sqrt(n);     // recompute after n changes
        }
        if (n > 2) {
            primeFactorSet.add(n);
        }
        return primeFactorSet.size();
    }

    static int countPrimeFactorsCounter(int n) {
        int count = 0; // using simple int
        if (n % 2 == 0) {
            count ++; // only add on first division
            n /= 2;
            while (n % 2 == 0) {
                n /= 2;
            }
        }
        double sn = Math.sqrt(n);  // compute Math.sqrt out of the loop
        for (int i = 3; i <= sn; i += 2) {
            if (n % i == 0) {
                count++; // only add on first division
                n /= i;
                while (n % i == 0) {
                    n /= i;
                }
                sn = Math.sqrt(n);     // recompute after n changes
            }
        }
        if (n > 2) {
            count++;
        }
        return count;
    }

现在counter方法变快了!甚至比它快一点set(这是完全可以预料的,因为它执行相同数量的计算,不包括 Set 开销)。

Benchmark              Mode  Cnt     Score    Error   Units
PrimeFactors.counter  thrpt    5  1513,228 ± 13,046  ops/ms
PrimeFactors.set      thrpt    5  1411,573 ± 10,004  ops/ms

请注意,set性能没有改变,因为 JIT 本身能够进行相同的优化,这要归功于更简单的控制流图。

结论: Java 性能是一件非常复杂的事情,尤其是在谈论微优化时。JIT 优化很脆弱,如果没有JMH和分析器等专门工具,很难理解 JVM 的想法。

于 2019-07-02T22:48:01.007 回答
0

首先,测试中有两组操作:测试因素,并记录这些因素。在切换实现时,使用 Set 与使用 ArrayList (在我的重写中,如下),而不是简单地计算因素会有所不同。

其次,我看到时间上有很大的变化。这是从 Eclipse 运行的。我不清楚是什么导致了巨大的变化。

我的“经验教训”是要注意测量的确切内容。是否打算测量分解算法本身(while 循环的成本加上算术运算)?是否应该包括时间记录因素?

一个次要的技术点:在这个实现中敏锐地感觉到缺少multiple-value-setqlisp 中可用的 。人们更愿意将余数和整数除法作为单个操作执行,而不是将它们写成两个不同的步骤。从语言和算法研究的角度来看,这是值得一看的。

以下是分解实现的三种变体的时序结果。第一个来自最初的(未优化的)实现,但改为使用简单的 List 而不是更难的时间 Set 来存储因素。第二个是您的优化,但仍然使用列表进行跟踪。第三个是你的优化,但包括改变计算因素。

  18 -  3790 1450 2410 (average of 10 iterations)
  64 -  1630 1220  260 (average of 10 iterations)
1091 - 16170 2850 1180 (average of 10 iterations)
1092 -  2720 1370  380 (average of 10 iterations)

4096210 - 28830 5430 9120 (average of  10 iterations, trial 1)
4096210 - 18380 6190 5920 (average of  10 iterations, trial 2)
4096210 - 10072 5816 4836 (average of 100 iterations, trial 1)
4096210 -  7202 5036 3682 (average of 100 iterations, trial 1)

---

Test value [ 18 ]
Warm-up count [ 2 ]
Test count [ 10 ]
Times [non-optimized]
Start [ 1621713914872600 (ns) ]
End   [ 1621713914910500 (ns) ]
Delta [ 37900 (ns) ]
Avg   [ 3790 (ns) ]
Factors: [2, 3, 3]
Times [optimized]
Start [ 1621713915343500 (ns) ]
End   [ 1621713915358000 (ns) ]
Delta [ 14500 (ns) ]
Avg   [ 1450 (ns) ]
Factors: [2, 3, 3]
Times [counting]
Start [ 1621713915550400 (ns) ]
End   [ 1621713915574500 (ns) ]
Delta [ 24100 (ns) ]
Avg   [ 2410 (ns) ]
Factors: 3
---
Test value [ 64 ]
Warm-up count [ 2 ]
Test count [ 10 ]
Times [non-optimized]
Start [ 1621747046013900 (ns) ]
End   [ 1621747046030200 (ns) ]
Delta [ 16300 (ns) ]
Avg   [ 1630 (ns) ]
Factors: [2, 2, 2, 2, 2, 2]
Times [optimized]
Start [ 1621747046337800 (ns) ]
End   [ 1621747046350000 (ns) ]
Delta [ 12200 (ns) ]
Avg   [ 1220 (ns) ]
Factors: [2, 2, 2, 2, 2, 2]
Times [counting]
Start [ 1621747046507900 (ns) ]
End   [ 1621747046510500 (ns) ]
Delta [ 2600 (ns) ]
Avg   [ 260 (ns) ]
Factors: 6
---
Test value [ 1091 ]
Warm-up count [ 2 ]
Test count [ 10 ]
Times [non-optimized]
Start [ 1621687024226500 (ns) ]
End   [ 1621687024388200 (ns) ]
Delta [ 161700 (ns) ]
Avg   [ 16170 (ns) ]
Factors: [1091]
Times [optimized]
Start [ 1621687024773200 (ns) ]
End   [ 1621687024801700 (ns) ]
Delta [ 28500 (ns) ]
Avg   [ 2850 (ns) ]
Factors: [1091]
Times [counting]
Start [ 1621687024954900 (ns) ]
End   [ 1621687024966700 (ns) ]
Delta [ 11800 (ns) ]
Avg   [ 1180 (ns) ]
Factors: 1
---
Test value [ 1092 ]
Warm-up count [ 2 ]
Test count [ 10 ]
Times [non-optimized]
Start [ 1621619636267500 (ns) ]
End   [ 1621619636294700 (ns) ]
Delta [ 27200 (ns) ]
Avg   [ 2720 (ns) ]
Factors: [2, 2, 3, 7, 13]
Times [optimized]
Start [ 1621619636657100 (ns) ]
End   [ 1621619636670800 (ns) ]
Delta [ 13700 (ns) ]
Avg   [ 1370 (ns) ]
Factors: [2, 2, 3, 7, 13]
Times [counting]
Start [ 1621619636895300 (ns) ]
End   [ 1621619636899100 (ns) ]
Delta [ 3800 (ns) ]
Avg   [ 380 (ns) ]
Factors: 5
---
Test value [ 4096210 ]
Warm-up count [ 2 ]
Test count [ 10 ]
Times [non-optimized]
Start [ 1621652753519800 (ns) ]
End   [ 1621652753808100 (ns) ]
Delta [ 288300 (ns) ]
Avg   [ 28830 (ns) ]
Factors: [2, 5, 19, 21559]
Times [optimized]
Start [ 1621652754116300 (ns) ]
End   [ 1621652754170600 (ns) ]
Delta [ 54300 (ns) ]
Avg   [ 5430 (ns) ]
Factors: [2, 5, 19, 21559]
Times [counting]
Start [ 1621652754323500 (ns) ]
End   [ 1621652754414700 (ns) ]
Delta [ 91200 (ns) ]
Avg   [ 9120 (ns) ]
Factors: 4

这是我对测试代码的重写。最感兴趣的是findFactorsfindFactorsOptfindFactorsCount

package my.tests;

import java.util.ArrayList;
import java.util.List;

public class PrimeFactorsTest {

    public static void main(String[] args) {
        if ( args.length < 2 ) {
            System.out.println("Usage: " + PrimeFactorsTest.class.getName() + " testValue warmupIterations testIterations");
            return;
        }

        int testValue = Integer.valueOf(args[0]);
        int warmCount = Integer.valueOf(args[1]);
        int testCount = Integer.valueOf(args[2]);

        if ( testValue <= 2 ) {
            System.out.println("Test value [ " + testValue + " ] must be at least 2.");
            return;
        } else {
            System.out.println("Test value [ " + testValue + " ]");
        }
        if ( warmCount <= 0 ) {
            System.out.println("Warm-up count [ " + testCount + " ] must be at least 1.");
        } else {
            System.out.println("Warm-up count [ " + warmCount + " ]");
        }
        if ( testCount <= 1 ) {
            System.out.println("Test count [ " + testCount + " ] must be at least 1.");
        } else {
            System.out.println("Test count [ " + testCount + " ]");
        }

        timedFactors(testValue, warmCount, testCount);
        timedFactorsOpt(testValue, warmCount, testCount);
        timedFactorsCount(testValue, warmCount, testCount);
    }

    public static void timedFactors(int testValue, int warmCount, int testCount) {
        List<Integer> factors = new ArrayList<Integer>();

        for ( int warmNo = 0; warmNo < warmCount; warmNo++ ) {
            factors.clear();
            findFactors(testValue, factors);
        }

        long startTime = System.nanoTime();
        for ( int testNo = 0; testNo < testCount; testNo++ ) {
            factors.clear();
            findFactors(testValue, factors);
        }
        long endTime = System.nanoTime();

        System.out.println("Times [non-optimized]");
        System.out.println("Start [ " + startTime + " (ns) ]");
        System.out.println("End   [ " + endTime + " (ns) ]");
        System.out.println("Delta [ " + (endTime - startTime) + " (ns) ]");
        System.out.println("Avg   [ " + (endTime - startTime) / testCount + " (ns) ]");
        System.out.println("Factors: " + factors);
    }

    public static void findFactors(int n, List<Integer> factors) {
        while ( n % 2 == 0 ) {
            n /= 2;
            factors.add( Integer.valueOf(2) );
        }

        for ( int factor = 3; factor <= Math.sqrt(n); factor += 2 ) {
            while ( n % factor == 0 ) {
                n /= factor;
                factors.add( Integer.valueOf(factor) );
            }
        }

        if ( n > 2 ) {
            factors.add( Integer.valueOf(n) );
        }
    }

    public static void timedFactorsOpt(int testValue, int warmCount, int testCount) {
        List<Integer> factors = new ArrayList<Integer>();
        for ( int warmNo = 0; warmNo < warmCount; warmNo++ ) {
            factors.clear();
            findFactorsOpt(testValue, factors);
        }

        long startTime = System.nanoTime();
        for ( int testNo = 0; testNo < testCount; testNo++ ) {
            factors.clear();
            findFactorsOpt(testValue, factors);
        }
        long endTime = System.nanoTime();

        System.out.println("Times [optimized]");
        System.out.println("Start [ " + startTime + " (ns) ]");
        System.out.println("End   [ " + endTime + " (ns) ]");
        System.out.println("Delta [ " + (endTime - startTime) + " (ns) ]");
        System.out.println("Avg   [ " + (endTime - startTime) / testCount + " (ns) ]");
        System.out.println("Factors: " + factors);
    }

    public static void findFactorsOpt(int n, List<Integer> factors) {
        if ( n % 2 == 0 ) {
            n /= 2;

            Integer factor = Integer.valueOf(2); 
            factors.add(factor);

            while (n % 2 == 0) {
                n /= 2;

                factors.add(factor);
            }
        }

        for ( int factorValue = 3; factorValue <= Math.sqrt(n); factorValue += 2) {
            if ( n % factorValue == 0 ) {
                n /= factorValue;

                Integer factor = Integer.valueOf(factorValue); 
                factors.add(factor);

                while ( n % factorValue == 0 ) {
                    n /= factorValue;
                    factors.add(factor);
                }
            }
        }

        if (n > 2) {
            factors.add( Integer.valueOf(n) );
        }
    }

    public static void timedFactorsCount(int testValue, int warmCount, int testCount) {
        int numFactors = 0;

        for ( int warmNo = 0; warmNo < warmCount; warmNo++ ) {
            numFactors = findFactorsCount(testValue);
        }

        long startTime = System.nanoTime();
        for ( int testNo = 0; testNo < testCount; testNo++ ) {
            numFactors = findFactorsCount(testValue);
        }
        long endTime = System.nanoTime();

        System.out.println("Times [counting]");
        System.out.println("Start [ " + startTime + " (ns) ]");
        System.out.println("End   [ " + endTime + " (ns) ]");
        System.out.println("Delta [ " + (endTime - startTime) + " (ns) ]");
        System.out.println("Avg   [ " + (endTime - startTime) / testCount + " (ns) ]");
        System.out.println("Factors: " + numFactors);
    }

    public static int findFactorsCount(int n) {
        int numFactors = 0;

        if ( n % 2 == 0 ) {
            n /= 2;
            numFactors++;

            while (n % 2 == 0) {
                n /= 2;
                numFactors++;
            }
        }

        for ( int factorValue = 3; factorValue <= Math.sqrt(n); factorValue += 2) {
            if ( n % factorValue == 0 ) {
                n /= factorValue;
                numFactors++;

                while ( n % factorValue == 0 ) {
                    n /= factorValue;
                    numFactors++;
                }
            }
        }

        if (n > 2) {
            numFactors++;
        }

        return numFactors;
    }
}
于 2019-07-02T15:51:57.603 回答
-1

首先你的块如果在这里: for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) {...

应该脱离循环,

其次,您可以使用不同的方法执行此代码,例如:

while (n % 2 == 0) { Current++; n /= 2; }

你可以改变它: if(n % 2 ==0) { current++; n=n%2; }

本质上,由于您的方法,您应该避免循环内的条件或指令:

(findNumberWithNPrimeFactors)

你的算法的复杂度是每个循环的复杂度 (findNumberWithNPrimeFactors) X ( 迭代次数 )

如果您在循环中添加测试或做作,您将获得 + 1(复杂度(findNumberWithNPrimeFactors)X(迭代次数))

于 2019-07-02T14:18:20.360 回答
-1

Math.sqrt通过划分 n,以下内容变得多余。不断地与较小的平方根进行比较甚至可能是最慢的操作。

然后做一会儿会是更好的风格。

static int countPrimeFactorsCounter2(int n) {
    int count = 0; // using simple int
    if (n % 2 == 0) {
        ++count; // only add on first division
        do {
            n /= 2;
        } while (n % 2 == 0);
    }
    for (int i = 3; i <= n; i += 2) {
        if (n % i == 0) {
            count++; // only add on first division
            do {
                n /= i;
            } while (n % i == 0);
        }
    }
    //if (n > 2) {
    //    ++count;
    //}
    return count;
}

使用平方根的逻辑谬误是基于∀ a, b: a.b = n你只需要尝试 for a < √n。然而,在 n-dividing 循环中,您只需保存一个步骤。请注意,在每个奇数 i 处计算 sqrt。

于 2019-07-02T14:21:32.970 回答