我需要找到由以下定义给出的帐篷地图函数的固定点和吸引子:
x t = (3/2) * x t-1 当 0 <= x <= (2/3) 和 x t = 3* (1-x t-1 ) 当 (2/3) <= x <= 1
我正在使用下面的 MATLAB 代码生成蜘蛛网图(显示在代码下方),看看我是否可以深入了解这个特定的帐篷地图功能。正如你所看到的,我从设置 t=1(和 x(1) = 0.2001)开始,但是有无数个可能的起点。如果您不测试每个起点,您如何确定固定点/吸引子?
clear
close all
% Initial condition 0.2001, must be symbolic.
nmax=200;
t=sym(zeros(1,nmax));t1=sym(zeros(1,nmax));t2=sym(zeros(1,nmax));
t(1)=sym(2001/10000);
mu=2;
halfm=(2/3) *nmax;
axis([0 1 0 1]);
for n=2:nmax
if (double(t(n-1)))>0 && (double(t(n-1)))<=2/3 % 0 <= x <= (2/3)
t(n)=sym((3/2)*t(n-1)); % x(t) = (3/2) * x(t-1)
else
if (double(t(n-1)))<1 % else (2/3) <= x <= 1
t(n)=sym(3*(1-t(n-1))); % x(t) = 3* (1-x(t-1))
end
end
end
for n=1:halfm
t1(2*n-1)=t(n);
t1(2*n)=t(n);
end
t2(1)=0;t2(2)=double(t(2));
for n=2:halfm
t2(2*n-1)=double(t(n));
t2(2*n)=double(t(n+1));
end
hold on
fsize=20;
plot(double(t1),double(t2),'r');
x=[0 (2/3) 1];y=[0 mu/2 0];
plot(x,y,'b');
以下蛛网图适用于 t(1) = 0.2001