我的主要目标是考虑更高价值的最新信息的功能。
因此,想法是通过新的原始转换“WeightTimeUntil”计算加权因子,然后转换原始“MultiplyNumeric”可以使用该加权因子来获得加权值。
我使用 Will Koehrsen 的演练演练作为数据和实体设置的起点。
因此我遇到了以下问题:
- featuretools 没有选择我想要实现的组合(见下文)
- 看起来 featuretools 没有选择组合,因为类型不匹配?!
- 通过更改我想要乘以权重因子的值的类型,我设法获得了正确的组合,但不是正确的目标
- 对于目标平等的客户,功能工具根本没有选择我想要得到的组合。只有当我使用日期和值是列的目标相等贷款时,特征工具才使用正确的组合
这是“WeightTimeUntil”原语的代码
def weight_time_until(array, time):
diff = pd.DatetimeIndex(array) - time
s = np.floor(diff.days/365/0.5)
aWidth = 9
a = math.log(0.1) / ( -(aWidth -1) )
w = np.exp(-a*s)
return w
WeightTimeUntil = make_trans_primitive(function=weight_time_until,
input_types=[Datetime],
return_type=Numeric,
uses_calc_time=True,
description="Calculates weight time until the cutoff time",
name="weight_time_until")
这是DFS执行代码:
features, feature_names = ft.dfs(entityset = es, target_entity = 'clients',
agg_primitives = ['sum'],
trans_primitives = [WeightTimeUntil, MultiplyNumeric])
这里是功能列表:
<Feature: income>,
<Feature: credit_score>,
<Feature: join_month>,
<Feature: log_income>,
<Feature: SUM(loans.loan_amount)>,
<Feature: SUM(loans.rate)>,
<Feature: SUM(payments.payment_amount)>,
<Feature: WEIGHT_TIME_UNTIL(joined)>,
<Feature: join_month * log_income>,
<Feature: income * log_income>,
<Feature: income * join_month>,
<Feature: credit_score * join_month>,
<Feature: credit_score * log_income>,
<Feature: credit_score * income>,
<Feature: SUM(loans.WEIGHT_TIME_UNTIL(loan_start))>,
<Feature: SUM(loans.WEIGHT_TIME_UNTIL(loan_end))>,
<Feature: SUM(loans.loan_amount * rate)>,
<Feature: income * SUM(loans.loan_amount)>,
<Feature: credit_score * SUM(loans.loan_amount)>,
<Feature: log_income * SUM(payments.payment_amount)>,
<Feature: log_income * WEIGHT_TIME_UNTIL(joined)>,
<Feature: income * SUM(payments.payment_amount)>,
<Feature: join_month * SUM(loans.rate)>,
<Feature: income * SUM(loans.rate)>,
<Feature: join_month * SUM(loans.loan_amount)>,
<Feature: SUM(loans.rate) * SUM(payments.payment_amount)>,
<Feature: credit_score * WEIGHT_TIME_UNTIL(joined)>,
<Feature: SUM(loans.rate) * WEIGHT_TIME_UNTIL(joined)>,
<Feature: income * WEIGHT_TIME_UNTIL(joined)>,
<Feature: log_income * SUM(loans.loan_amount)>,
<Feature: SUM(loans.loan_amount) * WEIGHT_TIME_UNTIL(joined)>,
<Feature: SUM(loans.loan_amount) * SUM(payments.payment_amount)>,
<Feature: credit_score * SUM(loans.rate)>,
<Feature: log_income * SUM(loans.rate)>,
<Feature: credit_score * SUM(payments.payment_amount)>,
<Feature: SUM(payments.payment_amount) * WEIGHT_TIME_UNTIL(joined)>,
<Feature: join_month * WEIGHT_TIME_UNTIL(joined)>,
<Feature: SUM(loans.loan_amount) * SUM(loans.rate)>,
<Feature: join_month * SUM(payments.payment_amount)>
我期待这样的事情:
SUM(loans.loan_amount * loans.WEIGHT_TIME_UNTIL(loan_start))>