Lemma re_not_empty_correct : forall T (re : @reg_exp T),
(exists s, s =~ re) <-> re_not_empty re = true.
Proof.
split.
- admit. (* I proved it myself *)
- intros. induction re.
+ simpl in H. discriminate H.
+ exists []. apply MEmpty.
+ exists [t]. apply MChar.
+ simpl in H. rewrite -> andb_true_iff in H. destruct H as [H1 H2].
apply IHre1 in H1. apply IHre2 in H2.
到目前为止,这是我们所得到的:
1 subgoal (ID 505)
T : Type
re1, re2 : reg_exp
H1 : exists s : list T, s =~ re1
H2 : exists s : list T, s =~ re2
IHre1 : re_not_empty re1 = true -> exists s : list T, s =~ re1
IHre2 : re_not_empty re2 = true -> exists s : list T, s =~ re2
============================
exists s : list T, s =~ App re1 re2
现在我需要将 H1 和 H2 组合成exists s : list T, s =~ App re1 re2
或将目标分解为 2 个子目标,并使用 H1 和 H2 分别证明它们。但我不知道,该怎么做。