我想我找到了一个替代解决方案,即使可能为时已晚
基本上,首先,我在包“texreg”的存储库中找到了这个函数:
extract.bife <- function(model,
include.loglik = TRUE,
include.deviance = TRUE,
include.nobs = TRUE,
...) {
s <- summary(model)
coefficient.names <- rownames(s$cm)
co <- s$cm[, 1]
se <- s$cm[, 2]
pval <- s$cm[, 4]
gof <- numeric()
gof.names <- character()
gof.decimal <- logical()
if (include.loglik == TRUE) {
lik <- logLik(model)
gof <- c(gof, lik)
gof.names <- c(gof.names, "Log Likelihood")
gof.decimal <- c(gof.decimal, TRUE)
}
if (include.deviance == TRUE) {
gof <- c(gof, deviance(model))
gof.names <- c(gof.names, "Deviance")
gof.decimal <- c(gof.decimal, TRUE)
}
if (include.nobs == TRUE) {
n <- s$nobs["nobs"]
gof <- c(gof, n)
gof.names <- c(gof.names, "Num. obs.")
gof.decimal <- c(gof.decimal, FALSE)
}
tr <- createTexreg(
coef.names = coefficient.names,
coef = co,
se = se,
pvalues = pval,
gof.names = gof.names,
gof = gof,
gof.decimal = gof.decimal
)
return(tr)
}
因此,对于您的示例,只需将其应用于您的模型并使用函数 texreg,您可能会得到一个 Latex-“like”的输出
tr <- extract.bife(output)
texreg(tr)
我希望它会有所帮助!最好的