有没有办法让 C# 方法中使用的所有类型?
例如,
public int foo(string str)
{
Bar bar = new Bar();
string x = "test";
TEST t = bar.GetTEST();
}
将返回:Bar、string 和 TEST。
我现在能得到的只是使用 EnvDTE.CodeFunction 的方法正文。也许有比尝试解析此代码更好的方法来实现它。
有没有办法让 C# 方法中使用的所有类型?
例如,
public int foo(string str)
{
Bar bar = new Bar();
string x = "test";
TEST t = bar.GetTEST();
}
将返回:Bar、string 和 TEST。
我现在能得到的只是使用 EnvDTE.CodeFunction 的方法正文。也许有比尝试解析此代码更好的方法来实现它。
我将借此机会发布我所做的概念证明,因为有人告诉我它无法完成 - 在这里和那里进行一些调整,扩展它以提取所有内容相对简单在方法中引用类型 - 为它的大小和缺少前言道歉,但它有些评论:
void Main()
{
Func<int,int> addOne = i => i + 1;
Console.WriteLine(DumpMethod(addOne));
Func<int,string> stuff = i =>
{
var m = 10312;
var j = i + m;
var k = j * j + i;
var foo = "Bar";
var asStr = k.ToString();
return foo + asStr;
};
Console.WriteLine(DumpMethod(stuff));
Console.WriteLine(DumpMethod((Func<string>)Foo.GetFooName));
Console.WriteLine(DumpMethod((Action)Console.Beep));
}
public class Foo
{
public const string FooName = "Foo";
public static string GetFooName() { return typeof(Foo).Name + ":" + FooName; }
}
public static string DumpMethod(Delegate method)
{
// For aggregating our response
StringBuilder sb = new StringBuilder();
// First we need to extract out the raw IL
var mb = method.Method.GetMethodBody();
var il = mb.GetILAsByteArray();
// We'll also need a full set of the IL opcodes so we
// can remap them over our method body
var opCodes = typeof(System.Reflection.Emit.OpCodes)
.GetFields()
.Select(fi => (System.Reflection.Emit.OpCode)fi.GetValue(null));
//opCodes.Dump();
// For each byte in our method body, try to match it to an opcode
var mappedIL = il.Select(op =>
opCodes.FirstOrDefault(opCode => opCode.Value == op));
// OpCode/Operand parsing:
// Some opcodes have no operands, some use ints, etc.
// let's try to cover all cases
var ilWalker = mappedIL.GetEnumerator();
while(ilWalker.MoveNext())
{
var mappedOp = ilWalker.Current;
if(mappedOp.OperandType != OperandType.InlineNone)
{
// For operand inference:
// MOST operands are 32 bit,
// so we'll start there
var byteCount = 4;
long operand = 0;
string token = string.Empty;
// For metadata token resolution
var module = method.Method.Module;
Func<int, string> tokenResolver = tkn => string.Empty;
switch(mappedOp.OperandType)
{
// These are all 32bit metadata tokens
case OperandType.InlineMethod:
tokenResolver = tkn =>
{
var resMethod = module.SafeResolveMethod((int)tkn);
return string.Format("({0}())", resMethod == null ? "unknown" : resMethod.Name);
};
break;
case OperandType.InlineField:
tokenResolver = tkn =>
{
var field = module.SafeResolveField((int)tkn);
return string.Format("({0})", field == null ? "unknown" : field.Name);
};
break;
case OperandType.InlineSig:
tokenResolver = tkn =>
{
var sigBytes = module.SafeResolveSignature((int)tkn);
var catSig = string
.Join(",", sigBytes);
return string.Format("(SIG:{0})", catSig == null ? "unknown" : catSig);
};
break;
case OperandType.InlineString:
tokenResolver = tkn =>
{
var str = module.SafeResolveString((int)tkn);
return string.Format("('{0}')", str == null ? "unknown" : str);
};
break;
case OperandType.InlineType:
tokenResolver = tkn =>
{
var type = module.SafeResolveType((int)tkn);
return string.Format("(typeof({0}))", type == null ? "unknown" : type.Name);
};
break;
// These are plain old 32bit operands
case OperandType.InlineI:
case OperandType.InlineBrTarget:
case OperandType.InlineSwitch:
case OperandType.ShortInlineR:
break;
// These are 64bit operands
case OperandType.InlineI8:
case OperandType.InlineR:
byteCount = 8;
break;
// These are all 8bit values
case OperandType.ShortInlineBrTarget:
case OperandType.ShortInlineI:
case OperandType.ShortInlineVar:
byteCount = 1;
break;
}
// Based on byte count, pull out the full operand
for(int i=0; i < byteCount; i++)
{
ilWalker.MoveNext();
operand |= ((long)ilWalker.Current.Value) << (8 * i);
}
var resolved = tokenResolver((int)operand);
resolved = string.IsNullOrEmpty(resolved) ? operand.ToString() : resolved;
sb.AppendFormat("{0} {1}",
mappedOp.Name,
resolved)
.AppendLine();
}
else
{
sb.AppendLine(mappedOp.Name);
}
}
return sb.ToString();
}
public static class Ext
{
public static FieldInfo SafeResolveField(this Module m, int token)
{
FieldInfo fi;
m.TryResolveField(token, out fi);
return fi;
}
public static bool TryResolveField(this Module m, int token, out FieldInfo fi)
{
var ok = false;
try { fi = m.ResolveField(token); ok = true; }
catch { fi = null; }
return ok;
}
public static MethodBase SafeResolveMethod(this Module m, int token)
{
MethodBase fi;
m.TryResolveMethod(token, out fi);
return fi;
}
public static bool TryResolveMethod(this Module m, int token, out MethodBase fi)
{
var ok = false;
try { fi = m.ResolveMethod(token); ok = true; }
catch { fi = null; }
return ok;
}
public static string SafeResolveString(this Module m, int token)
{
string fi;
m.TryResolveString(token, out fi);
return fi;
}
public static bool TryResolveString(this Module m, int token, out string fi)
{
var ok = false;
try { fi = m.ResolveString(token); ok = true; }
catch { fi = null; }
return ok;
}
public static byte[] SafeResolveSignature(this Module m, int token)
{
byte[] fi;
m.TryResolveSignature(token, out fi);
return fi;
}
public static bool TryResolveSignature(this Module m, int token, out byte[] fi)
{
var ok = false;
try { fi = m.ResolveSignature(token); ok = true; }
catch { fi = null; }
return ok;
}
public static Type SafeResolveType(this Module m, int token)
{
Type fi;
m.TryResolveType(token, out fi);
return fi;
}
public static bool TryResolveType(this Module m, int token, out Type fi)
{
var ok = false;
try { fi = m.ResolveType(token); ok = true; }
catch { fi = null; }
return ok;
}
}
如果您可以访问此方法的 IL,您也许可以做一些合适的事情。也许看看开源项目ILSpy,看看你是否可以利用他们的任何工作。
我刚刚发布了一个这样的广泛示例how to use Mono.Cecil to do static code analysis
。
我还展示了一个 CallTreeSearch 枚举器类,它可以静态分析调用树,寻找某些有趣的东西并使用自定义提供的选择器函数生成结果,因此您可以将其插入您的“有效负载”逻辑,例如
static IEnumerable<TypeUsage> SearchMessages(TypeDefinition uiType, bool onlyConstructions)
{
return uiType.SearchCallTree(IsBusinessCall,
(instruction, stack) => DetectTypeUsage(instruction, stack, onlyConstructions));
}
internal class TypeUsage : IEquatable<TypeUsage>
{
public TypeReference Type;
public Stack<MethodReference> Stack;
#region equality
// ... omitted for brevity ...
#endregion
}
private static TypeUsage DetectTypeUsage(
Instruction instruction, IEnumerable<MethodReference> stack, bool onlyConstructions)
{
TypeDefinition resolve = null;
{
TypeReference tr = null;
var methodReference = instruction.Operand as MethodReference;
if (methodReference != null)
tr = methodReference.DeclaringType;
tr = tr ?? instruction.Operand as TypeReference;
if ((tr == null) || !IsInterestingType(tr))
return null;
resolve = tr.GetOriginalType().TryResolve();
}
if (resolve == null)
throw new ApplicationException("Required assembly not loaded.");
if (resolve.IsSerializable)
if (!onlyConstructions || IsConstructorCall(instruction))
return new TypeUsage {Stack = new Stack<MethodReference>(stack.Reverse()), Type = resolve};
return null;
}
这遗漏了一些细节
IsBusinessCall
,IsConstructorCall
并且TryResolve
因为这些是微不足道的,仅用作说明希望有帮助
正如其他人所提到的,如果您拥有 DLL,则可以使用类似于ILSpy 在其分析功能中所做的事情(迭代程序集中的所有 IL 指令以查找对特定类型的引用)。
否则,如果不将文本解析为 C# 抽象语法树并使用解析器,就没有办法做到这一点——它可以很好地理解代码的语义,从而知道示例中的“Bar”是否确实是可以从该方法访问的类型(在其“使用”范围内),或者可能是方法的名称、成员字段等...... SharpDevelop 包含一个 C# 解析器(称为“NRefactory”),还包含这样一个解析器,您可以通过查看此线程来考虑采用该选项,但请注意,将其设置为正常工作需要大量工作。
这绝对不能通过反射(GetMethod()、表达式树等)来完成。正如您所提到的,使用 EnvDTE 的 CodeModel 是一种选择,因为您可以逐行获取C#,但是在 Visual Studio 之外使用它(即处理一个已经存在的函数,而不是在您的编辑器窗口中)几乎是不可能的,恕我直言。
但我可以推荐Mono.Cecil,它可以逐行(在方法内)处理CIL代码,您可以在您引用的任何程序集中的任何方法上使用它。然后,您可以检查每一行是否是变量声明(如 string x = "test" 或 methodCall,并且您可以获取这些行中涉及的类型。
通过反射,您可以获得方法。这将返回一个MethodInfo对象,并且使用此对象您无法获取方法中使用的类型。所以我认为答案是你不能在C#中获得这个本机。
我能想到的最接近的就是表达式树。查看Microsoft 的文档。
然而,它们非常有限,仅适用于简单的表达式,而不适用于带有语句体的完整方法。
编辑:由于海报的目的是找到类耦合和使用的类型,我建议使用像NDepend这样的商业工具来进行代码分析作为一个简单的解决方案。