6

我正在使用 networkx 来计算k-shortest simple pathsnx.shortest_simple_paths(G, source, target, weight=weight)按成本递增顺序返回路径列表(考虑权重的累积路径长度)。

我有兴趣获得这些路径的成本。networkX 中是否有任何简单的函数来获得这个?

这个问题类似于这个问题:Networkx 中是否已经实现了算法来返回路径长度以及路径?.

我相信该帖子中发布的答案是错误的。从如何添加自定义函数来计算图中的边权重?我做了以下解决方案(见下文)。

这是正确的方法吗?

networkx 库中有什么简单的东西吗?

我的目标是找到k-shortest path的成本。

G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
G.add_edge('a', 'b', weight=2)
G.add_edge('b', 'c', weight=4)
G.add_edge('a', 'c', weight=10)
G.add_edge('c', 'd', weight=6)
G.size()

def path_length(G, nodes, weight):
    w = 0
    for ind,nd in enumerate(nodes[1:]):
        prev = nodes[ind]
        w += G[prev][nd][weight]
    return w

for path in nx.shortest_simple_paths(G, 'a', 'd', weight='weight'):
    print(path, len(path)) # wrong approach
    print(path, path_length(G,path,'weight')) # correct solution
    print("--------------")

这将输出:

['a', 'b', 'c', 'd'] 4
['a', 'b', 'c', 'd'] 12
--------------
['a', 'c', 'd'] 3
['a', 'c', 'd'] 16
--------------
4

3 回答 3

5

我很欣赏@sentence 和@nbeuchat 的解决方案。但是,如果您有一个大图,@sentence 的解决方案需要花费大量时间,而 nbeuchat 的解决方案不提供 k 最短路径。我合并了他们的解决方案,以提出更快的具有路径长度的 k 最短简单路径。

import networkx as nx

G = nx.Graph()

G.add_edge('a', 'b', weight=2)
G.add_edge('b', 'c', weight=4)
G.add_edge('a', 'c', weight=10)
G.add_edge('c', 'd', weight=6)
G.add_edge('b', 'd', weight=2)
G.add_edge('b', 'e', weight=5)
G.add_edge('e', 'f', weight=8)
G.add_edge('d', 'f', weight=8)

from itertools import islice
from networkx.classes.function import path_weight

def k_shortest_paths(G, source, target, k, weight=None):
    return list(islice(nx.shortest_simple_paths(G, source, target, weight='weight'), k))

for path in k_shortest_paths(G, 'a','f', 3):
    print(path, path_weight(G, path, weight="weight"))
于 2021-03-18T07:02:09.203 回答
2

显然,k_shortest_pathNetworkX 中还没有实现一个功能,尽管这个需求并不新鲜,你可以在网上找到一些实现Yen 算法的尝试。

您的问题的(非常)粗略的解决方案可能是:

def k_shortest_path(G, source, target, k):
    def path_cost(G, path):
        return sum([G[path[i]][path[i+1]]['weight'] for i in range(len(path)-1)])
    return sorted([(path_cost(G,p), p) for p in nx.shortest_simple_paths(G, source,target,weight='weight') if len(p)==k])[0]

对于这种图:

import networkx as nx

G = nx.Graph()

G.add_edge('a', 'b', weight=2)
G.add_edge('b', 'c', weight=4)
G.add_edge('a', 'c', weight=10)
G.add_edge('c', 'd', weight=6)
G.add_edge('b', 'd', weight=2)
G.add_edge('b', 'e', weight=5)
G.add_edge('e', 'f', weight=8)
G.add_edge('d', 'f', weight=8)

在此处输入图像描述

调用:

k_shortest_path(G, 'a', 'f', 4)

返回:

(12, ['a', 'b', 'd', 'f'])
于 2019-06-19T10:43:34.917 回答
2

你可以使用path_weight(G, path, weight="weight")如下:

from networkx.algorithms.shortest_paths.generic import shortest_path
from networkx.classes.function import path_weight

path = shortest_path(G, source=source, target=target, weight="weight")
path_length = path_weight(G, path, weight="weight")
于 2021-02-26T12:16:29.690 回答