我正在开发一个 CUDA 矩阵乘法,但我做了一些修改以观察它们如何影响性能。
我正在尝试观察一个简单矩阵乘法内核的行为(并且我正在测量 GPU 事件时间的变化)。但我在两种特定的不同条件下对其进行测试:
我有一定数量的矩阵(比如
matN
)A,B和C,然后我将(H2D)一个矩阵转移给A,一个矩阵转移给B,然后将它们相乘,以转移回(D2H)一个C;我有A、B 和 C 的任何一个,但我在时间为 A 和 B
matN
传输 >1(比如说)矩阵,执行精确的乘法,然后传回结果矩阵 C。chunk
chunk
chunk
在第一种情况下 ( chunk = 1
) 一切都按预期工作,但在第二种情况下 ( chunk > 1
) 我得到一些 C 是正确的,而另一些是错误的。
但是,如果我在得到的所有结果都是正确的cudaDeviceSynchronize()
之后加上 a 。cudaMemcpyAsync
这是执行我上面刚刚描述的代码的一部分:
/**** main.cpp ****/
int chunk = matN/iters;
#ifdef LOWPAR
GRIDx= 1;
GRIDy= 1;
label="LOW";
#else
int sizeX = M;
int sizeY = N;
GRIDx = ceil((sizeX)/BLOCK);
GRIDy = ceil((sizeY)/BLOCK);
label="";
#endif
const int bytesA = M*K*sizeof(float);
const int bytesB = K*N*sizeof(float);
const int bytesC = M*N*sizeof(float);
//device mem allocation
float *Ad, *Bd, *Cd;
gpuErrchk( cudaMalloc((void **)&Ad, bytesA*chunk) );
gpuErrchk( cudaMalloc((void **)&Bd, bytesB*chunk) );
gpuErrchk( cudaMalloc((void **)&Cd, bytesC*chunk) );
//host pinned mem allocation
float *A, *B, *C;
gpuErrchk( cudaMallocHost((void **)&A, bytesA*matN) );
gpuErrchk( cudaMallocHost((void **)&B, bytesB*matN) );
gpuErrchk( cudaMallocHost((void **)&C, bytesC*matN) );
//host data init
for(int i=0; i<matN; ++i){
randomMatrix(M, K, A+(i*M*K));
randomMatrix(K, N, B+(i*K*N));
}
//event start
createAndStartEvent(&startEvent, &stopEvent);
if (square)
{
label += "SQUARE";
int size = N*N;
for (int i = 0; i < iters; ++i) {
int j = i%nStream;
int idx = i*size*chunk;
newSquareMatMulKer(A+idx, B+idx, C+idx, Ad, Bd, Cd, N, chunk, stream[j]);
}
}
else {
...
}
msTot = endEvent(&startEvent, &stopEvent);
#ifdef MEASURES
printMeasures(square, label, msTot, millis.count(), matN, iters, devId);
#else
float *_A, *_B, *_C, *tmpC;
tmpC = (float *)calloc(1,bytesC*chunk);
for (int s=0; s<matN; ++s)
{
_A = A+(s*M*K);
_B = B+(s*K*N);
_C = C+(s*M*N);
memset(tmpC, 0, bytesC*chunk);
hostMatMul(_A, _B, tmpC, M, K, N);
checkMatEquality(_C, tmpC, M, N);
}
#endif
/**** matmul.cu ****/
__global__ void squareMatMulKernel(float* A, float* B, float* C, int N, int chunk) {
int ROW = blockIdx.x*blockDim.x+threadIdx.x;
int COL = blockIdx.y*blockDim.y+threadIdx.y;
if (ROW<N && COL<N) {
int size=N*N;
int offs = 0;
float tmpSum=0.0f;
for (int s=0; s<chunk; ++s)
{
offs = s*size;
tmpSum = 0.0f;
for (int i = 0; i < N; ++i) {
tmpSum += A[offs+(ROW*N)+i] * B[offs+(i*N)+COL];
}
C[offs+(ROW*N)+COL] = tmpSum;
}
}
return ;
}
void newSquareMatMulKer(float *A, float *B, float *C, float *Ad, float *Bd, float *Cd,
int n, int chunk, cudaStream_t strm)
{
int size = n*n;
int bytesMat = size*sizeof(float);
dim3 dimBlock(BLOCK,BLOCK,1);
dim3 dimGrid(GRIDx, GRIDy,1);
gpuErrchk( cudaMemcpyAsync(Ad, A, bytesMat*chunk, cudaMemcpyHostToDevice, strm) );
gpuErrchk( cudaMemcpyAsync(Bd, B, bytesMat*chunk, cudaMemcpyHostToDevice, strm) );
#ifdef LOWPAR
squareMatMulGridStrideKer<<<dimGrid, dimBlock, 0, strm>>>(Ad, Bd, Cd, n, chunk);
#else
squareMatMulKernel<<<dimGrid, dimBlock, 0, strm>>>(Ad, Bd, Cd, n, chunk);
#endif
squareMatMulKernel<<<dimGrid, dimBlock, 0, strm>>>(Ad, Bd, Cd, n, chunk);
gpuErrchk( cudaMemcpyAsync( C, Cd, bytesMat*chunk, cudaMemcpyDeviceToHost, strm) );
cudaDeviceSynchronize();
^ ^ ^ ^ ^ ^
}
我尝试使用 cuda-gdb 进行调试,但没有出现任何奇怪的情况,gpuErrchk
不会在 CUDA API 调用中引发任何错误。我也使用 memcheck 运行代码,在有和没有的情况下cudaDeviceSynchronize
,在这两种情况下我都没有收到错误。
我想我可以说这是一个同步问题,但我不明白这背后的原因是什么。有人能发现我哪里出错了吗?其他代码风格的建议也非常感谢。