0

在尝试 TFP 时,我尝试从共轭正态模型(已知方差)的后验分布中进行采样,即

x|mu ~ 正常(mu, 1.)

mu ~ 正常(4., 2.)

与 pymc3 和解析解相比,tf.mcmc.RandomWalkMetropolis 采样器给出了不同的后验。注意:pymc3 检索正确的后验。

我还尝试了 TFP 中的 HMC 采样器,结果相同(不正确)

!pip install tensorflow==2.0.0-beta0 
!pip install tfp-nightly


### IMPORTS
import numpy as np
import pymc3 as pm
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions

import matplotlib.pyplot as plt
import seaborn as sns

tf.random.set_seed(1905)

%matplotlib inline
sns.set(rc={'figure.figsize':(9.3,6.1)})
sns.set_context('paper')
sns.set_style('whitegrid')



### CREATE DATA
observed = tfd.Normal(loc=0., scale=1.).sample(20)
sns.distplot(observed, kde=False)
sns.despine();



### MODEL
# prior
mu_0, sigma_0 = 4., 2.
prior = tfd.Normal(mu_0, sigma_0)

# likelihood
mu, sigma = prior.sample(1), 1. # use a sample from the prior as guess for mu
likelihood = tfd.Normal(mu, sigma) 

# function to get posterior analytically
def get_param_updates(data, sigma, prior_mu, prior_sigma): #sigma is known
    n = len(data)
    sigma2 = sigma**2
    prior_sigma2 = prior_sigma**2
    x_bar = tf.reduce_mean(data)

    post_mu = ((sigma2 * prior_mu) + (n * prior_sigma2 * x_bar)) / ((n * prior_sigma2) + (sigma2))
    post_sigma2 = (sigma2 * prior_sigma2) / ((n * prior_sigma2) + sigma2)
    post_sigma = tf.math.sqrt(post_sigma2)
    return post_mu, post_sigma

# posterior
mu_n, sigma_n = get_param_updates(observed,
                                  sigma=1, 
                                  prior_mu=mu_0, 
                                  prior_sigma=sigma_0)
posterior = tfd.Normal(mu_n, sigma_n, name='posterior')



### PyMC3
# define model
with pm.Model() as model:
  mu = pm.Normal('mu', mu=4., sigma=2.)
  x = pm.Normal('observed', mu=mu, sigma=1., observed=observed)
  trace_pm = pm.sample(10000, tune=500, chains=1)

# plots
sns.distplot(posterior.sample(10**5))
sns.distplot(trace_pm['mu'])
plt.legend(labels=['Analytic Posterior', 'PyMC Posterior']);



### TFP
# definition of the joint_log_prob to evaluate samples
def joint_log_prob(data, proposal):
  prior = tfd.Normal(mu_0, sigma_0, name='prior')
  likelihood = tfd.Normal(proposal, sigma, name='likelihood')
  return (prior.log_prob(proposal) + tf.reduce_mean(likelihood.log_prob(data)))

# define a closure on joint_log_prob
def unnormalized_log_posterior(proposal):
  return joint_log_prob(data=observed, proposal=proposal)

# define how to propose state
rwm = tfp.mcmc.RandomWalkMetropolis(
    target_log_prob_fn=unnormalized_log_posterior
)

# define initial state
initial_state = tf.constant(0., name='initial_state')

# sample trace
trace, kernel_results = tfp.mcmc.sample_chain(
    num_results=10**5,
    num_burnin_steps=5000,
    current_state=initial_state,
    num_steps_between_results=1,
    kernel=rwm, 
    parallel_iterations=1
)

# plots
sns.distplot(posterior.sample(10**5))
sns.distplot(trace_pm['mu'])
sns.distplot(trace)
sns.despine()
plt.legend(labels=['Analytic','PyMC3', 'TFP'])
plt.xlim(-5, 7);

我期望 tfp、pymc3 和解析解(pymc3 找到正确的后验)得到相同的结果。

比较图

4

1 回答 1

1

对于这类问题,随机游走并不是一个很好的采样器。在它接近真正的后验之前,您可能需要大量的样本。

PyMC 使用 NUTS——一种自适应哈密顿蒙特卡罗方法。TFP 支持 HMC (tfp.mcmc.HamiltonianMonteCarlo);您应该能够将其替换为 RWM(但您可能必须调整步长和跳跃步数参数(这是 NUTS 自适应为您所做的事情)。仅此一项就可以让您更接近一致的结果。

于 2019-06-18T16:21:57.253 回答