我正在尝试计算 igraph 中图形的全局效率,但我不确定我是否正确使用了该模块。我认为有一个解决方案可能有点道理,但它在 r 中,我无法破译他们在说什么。
我曾尝试以 networkx 方式编写代码,试图模仿他们计算全局效率的方式,但到目前为止我还没有成功。我正在使用 igraph,因为我正在处理大图。任何帮助将不胜感激:D
这是我尝试过的:
import igraph
import pandas as pd
import numpy as np
from itertools import permutations
datasafe = pd.read_csv("b1.csv", index_col=0)
D = datasafe.values
g = igraph.Graph.Adjacency((D > 0).tolist())
g.es['weight'] = D[D.nonzero()]
def efficiency_weighted(g):
weights = g.es["weight"][:]
eff = (1.0 / np.array(g.shortest_paths_dijkstra(weights=weights)))
return eff
def global_efficiecny_weighted(g):
n=180.0
denom=n*(n-1)
g_eff = sum(efficiency_weighted(g) for u, v in permutations(g, 2))
return g_eff
global_efficiecny_weighted(g)
我收到的错误消息是:- TypeError: 'Graph' object is not iterable