我有两个 GPU。我的程序使用 TensorRT 和 Tensorflow。
当我只运行 TensorRT 部分时,这很好。当我与 Tensorflow 部分一起运行时,出现错误
[TensorRT] ERROR: engine.cpp (370) - Cuda Error in ~ExecutionContext: 77 (an illegal memory access was encountered)
terminate called after throwing an instance of 'nvinfer1::CudaError'
what(): std::exception
问题是当 TensorFlow 会话开始时如下
self.graph = tf.get_default_graph()
self.persistent_sess = tf.Session(graph=self.graph, config=tf_config)
它将两个 GPU 加载为
2019-06-06 14:15:04.420265: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6965 MB memory) -> physical GPU (device: 0, name: Quadro P4000, pci bus id: 0000:04:00.0, compute capability: 6.1)
2019-06-06 14:15:04.420713: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 7159 MB memory) -> physical GPU (device: 1, name: Quadro P4000, pci bus id: 0000:05:00.0, compute capability: 6.1)
我试图只加载一个 GPU
(1)放在python代码之上
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
(2)
with tf.device('/device:GPU:0'):
self.graph = tf.get_default_graph()
self.persistent_sess = tf.Session(graph=self.graph, config=tf_config)
两者都不起作用。
如何解决问题?