我试图最小化函数 0.5*(x^2+y^2) 受到一系列 (N=20) x a1+y a2+a3 z >= 1 形式的不等式约束。解决方案应该是大约 x=0.50251,y=-0.5846,z=0.36787。例程以消息“优化已成功终止”终止,但超过一半的约束未得到遵守。我也尝试了不同的求解器,结果相同。
缩放目标函数会改变解,但不会收敛到预期的解。
from scipy.optimize import minimize
import numpy as np
Pct=np.array([[-0.664, 3.179],[ 0.231, -2.044],[-2.493, 3.25 ],[ 0.497, -0.654],[-1.27, 1.248],[-1.185, 1.814],[-1.843, 4.386],[-1.616, 1.401],[ 0.052, -1.232],[-3.145, 0.404],[ 0.672, -1.655],[ 2.202, -1.888],[ 4.084, -1.067],[ 1.006, -1.671],[-2.255, 1.51 ],[-1.264, 1.663],[ 1.897, -2.217],[ 1.843, -1.276],[-1.693, 1.623],[ 2.297, -1.709]])
Sid=np.array([-1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1])
# func to be minimized
def OptFunc(x):
return 0.5*(x[0]**2+x[1]**2)
def JacOptFunc(x):
return np.array([x[0],x[1],0.0])
# Constraints
c=[]
for i in range(len(Sid)):
c+=[{'type': 'ineq', 'fun': lambda x: Sid[i]*(x[0]*Pct[i,0]+x[1]*Pct[i,1]+x[2])-1 }]
cons=tuple(c)
# start optimization
res = minimize(OptFunc,(0.3,-0.2,0.1),constraints=cons,method='SLSQP',jac=JacOptFunc)
#expected solution should be around
# [0.5025062702615434, -0.584685257866671, 0.36787016514022236]
print("-->",res.message)
print("solution ",res.x,flush=True)
print("Check Constraints")
cons=list(cons)
for i in range(len(cons)):
lokfun=c[i]['fun']
print("Constraint # ",i," value: ",lokfun(res.x))
预期结果约为 x=0.50251, y=-0.5846, z=0.36787 但我得到以下输出:
--> Optimization terminated successfully.
solution [-1.14580677e-04 -1.16285140e-04 1.00006446e+00]
Check Constraints
Constraint # 0 value: -1.9997708716077622
Constraint # 1 value: 0.0002756791862408292
Constraint # 2 value: -1.999972183420499
Constraint # 3 value: 8.356438220613605e-05
Constraint # 4 value: -2.0000648541023893
Constraint # 5 value: -1.9999892973558606
Constraint # 6 value: -1.9997656060620763
Constraint # 7 value: -2.000086707390163
Constraint # 8 value: 0.00020176559401496874
Constraint # 9 value: -2.0003778375289833
Constraint # 10 value: 0.00017991418852214558
Constraint # 11 value: 3.1700190727068644e-05
Constraint # 12 value: -0.0002794107423930159
Constraint # 13 value: 0.00014350480474445426
Constraint # 14 value: -2.000147249362345
Constraint # 15 value: -2.0000159082853974
Constraint # 16 value: 0.00010490510804150865
Constraint # 17 value: 1.6681482228886324e-06
Constraint # 18 value: -2.0000697148012767
Constraint # 19 value: -1.354516498963676e-11