我想使用 Markowitz 理论(给定收入的 Markowitz 方法最小化风险 = 15%)和 Scipy.minimize 优化我的投资组合
我有风险功能
def objective(x):
x1=x[0];x2=x[1];x3=x[2]; x4=x[3]
return 1547.87020*x1**2 + 125.26258*x1*x2 + 1194.3433*x1*x3 + 63.6533*x1*x4 \
+ 27.3176649*x2**2 + 163.28848*x2*x3 + 4.829816*x2*x4 \
+ 392.11819*x3**2 + 56.50518*x3*x4 \
+ 34.484063*x4**2
部分库存总和(%) = 1
def constraint1(x):
return (x[0]+x[1]+x[2]+x[3]-1.0)
有限制的收入函数
def constraint2(x):
return (-1.37458*x[0] + 0.92042*x[1] + 5.06189*x[2] + 0.35974*x[3] - 15.0)
我使用以下方法对其进行测试:
x0=[0,1,1,0] #Initial value
b=(0.0,1.0)
bnds=(b,b,b,b)
con1={'type':'ineq','fun':constraint1}
con2={'type':'eq','fun':constraint2}
cons=[con1,con2]
sol=minimize(objective,x0,method='SLSQP',\
bounds=bnds,constraints=cons)
我的结果是:
fun: 678.5433939
jac: array([1383.25920868, 222.75363159, 1004.03005219, 130.30312347])
message: 'Positive directional derivative for linesearch'
nfev: 216
nit: 20
njev: 16
status: 8
success: False
x: array([0., 1., 1., 1.])
但是怎么做?部分投资组合的总和不能超过 1(现在部分股票 2=stock3=stock4=100%)。它的约束1。问题出在哪里?