-1

我想使用 Markowitz 理论(给定收入的 Markowitz 方法最小化风险 = 15%)和 Scipy.minimize 优化我的投资组合

我有风险功能

def objective(x):   
    x1=x[0];x2=x[1];x3=x[2]; x4=x[3]
    return 1547.87020*x1**2 + 125.26258*x1*x2 + 1194.3433*x1*x3 + 63.6533*x1*x4  \
    + 27.3176649*x2**2 + 163.28848*x2*x3 + 4.829816*x2*x4 \
    + 392.11819*x3**2 + 56.50518*x3*x4 \
    + 34.484063*x4**2

部分库存总和(%) = 1

def constraint1(x):
    return (x[0]+x[1]+x[2]+x[3]-1.0)

有限制的收入函数

def constraint2(x):     
    return (-1.37458*x[0] + 0.92042*x[1] + 5.06189*x[2] + 0.35974*x[3] - 15.0)

我使用以下方法对其进行测试:

x0=[0,1,1,0] #Initial value
b=(0.0,1.0) 
bnds=(b,b,b,b)
con1={'type':'ineq','fun':constraint1}
con2={'type':'eq','fun':constraint2}
cons=[con1,con2]
sol=minimize(objective,x0,method='SLSQP',\
             bounds=bnds,constraints=cons)

我的结果是:

     fun: 678.5433939
     jac: array([1383.25920868,  222.75363159, 1004.03005219,  130.30312347])
 message: 'Positive directional derivative for linesearch'
    nfev: 216
     nit: 20
    njev: 16
  status: 8
 success: False
       x: array([0., 1., 1., 1.])

但是怎么做?部分投资组合的总和不能超过 1(现在部分股票 2=stock3=stock4=100%)。它的约束1。问题出在哪里?

4

2 回答 2

1

由于第一个约束的错误定义,您的代码返回的值不尊重您的约束,(a-b >= 0 => a>b)因此在您的情况下a=1(不等式中的顺序很重要)。另一方面,您x0还必须尊重您的约束和sum([0,1,1,0]) = 2 > 1. 我稍微改进了您的代码并修复了上述问题,但我仍然认为您需要检查您的第二个约束:

import numpy as np
from scipy.optimize import minimize


def objective(x):   
    x1, x2, x3, x4 = x[0], x[1], x[2], x[3]
    coefficients   = np.array([1547.87020, 125.26258, 1194.3433, 63.6533, 27.3176649, 163.28848, 4.829816, 392.11819, 56.50518, 34.484063])
    xs             = np.array([     x1**2,     x1*x2,     x1*x3,   x1*x4,      x2**2,     x2*x3,    x2*x4,     x3**2,    x3*x4,     x4**2])
    return np.dot(xs, coefficients)

const1 = lambda x: 1 - sum(x)
const2 = lambda x: np.dot(np.array([-1.37458, 0.92042, 5.06189, 0.35974]), x) - 15.0

x0   = [0, 0, 0, 0] #Initial value
b    = (0.0, 1.0) 
bnds = (b, b, b, b)
cons = [{'type':'ineq','fun':const1}, {'type':'eq', 'fun':const2}]

# minimize
sol  = minimize(objective,
                x0,
                method      = 'SLSQP',
                bounds      = bnds,
                constraints = cons)

print(sol)

输出:

     fun: 392.1181900000138
     jac: array([1194.34332275,  163.28847885,  784.23638535,   56.50518036])
 message: 'Positive directional derivative for linesearch'
    nfev: 92
     nit: 11
    njev: 7
  status: 8
 success: False
       x: array([0.00000000e+00, 5.56638069e-14, 1.00000000e+00, 8.29371293e-14])
于 2019-05-31T15:49:54.293 回答
1

输出显示“成功:错误”因此它告诉您它未能找到问题的解决方案。

另外,你为什么把 con1={'type':'ineq','fun':constraint1}

难道你不想 con1={'type':' eq ','fun':constraint1}

我使用 method='BFGS' 获得了成功

于 2019-05-30T22:59:00.680 回答