我试图在将 GRE 分数与录取概率相关联的数据集上在 Octave 5.1.0 中实现线性回归。数据集是这样的,
337 0.92
324 0.76
316 0.72
322 0.8
。
.
.
我的主 Program.m 文件看起来像,
% read the data
data = load('Admission_Predict.txt');
% initiate variables
x = data(:,1);
y = data(:,2);
m = length(y);
theta = zeros(2,1);
alpha = 0.01;
iters = 1500;
J_hist = zeros(iters,1);
% plot data
subplot(1,2,1);
plot(x,y,'rx','MarkerSize', 10);
title('training data');
% compute cost function
x = [ones(m,1), (data(:,1) ./ 300)]; % feature scaling
J = computeCost(x,y,theta);
% run gradient descent
[theta, J_hist] = gradientDescent(x,y,theta,alpha,iters);
hold on;
subplot(1,2,1);
plot((x(:,2) .* 300), (x*theta),'-');
xlabel('GRE score');
ylabel('Probability');
hold off;
subplot (1,2,2);
plot(1:iters, J_hist, '-b');
xlabel('no: of iteration');
ylabel('Cost function');
computeCost.m 看起来像,
function J = computeCost(x,y,theta)
m = length(y);
h = x * theta;
J = (1/(2*m))*sum((h-y) .^ 2);
endfunction
和 gradientDescent.m 看起来像,
function [theta, J_hist] = gradientDescent(x,y,theta,alpha,iters)
m = length(y);
J_hist = zeros(iters,1);
for i=1:iters
diff = (x*theta - y);
theta = theta - (alpha * (1/(m))) * (x' * diff);
J_hist(i) = computeCost(x,y,theta);
endfor
endfunction
然后绘制的图表如下所示,
您可以看到,即使我的成本函数似乎已最小化,也感觉不对。
有人可以告诉我这是否正确吗?如果没有,我做错了什么?