import numpy as np
import pandas as pd
df=pd.read_excel('Finning2.xlsx',encoding='utf-8')
import nltk
nltk.download('vader_lexicon')
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sid = SentimentIntensityAnalyzer()
review = df['review']
review = str(review).encode('utf-8')
df['scores'] = df['review'].apply(lambda review:sid.polarity_scores(review))
问问题
2172 次
3 回答
2
在应用 polar_scores 函数之前,我们需要将评论列转换为字符串
df['score'] = df['review'].apply(lambda review:sid.polarity_scores(str(review)))
于 2020-03-22T08:12:50.800 回答
0
Try this (worked for me):
import numpy as np
import pandas as pd
df=pd.read_excel('Finning2.xlsx').astype(str)
import nltk
nltk.download('vader_lexicon')
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sid = SentimentIntensityAnalyzer()
review = df['review']
review = str(review).encode('utf-8')
df['scores'] = df['review'].apply(lambda review:sid.polarity_scores(review))
于 2021-06-18T16:07:42.997 回答
0
我模拟了一个示例(如下所示),但无法复制您所看到的行为。您能否向我们展示数据框是如何形成的,或者您的数据的“审查”列是什么样的样本?
dict = {"population": [200.4, 143.5, 1252, 1357, 52.98]}
import pandas as pd
df = pd.DataFrame(dict)
pop = str(df['population']).encode("utf-8")
print(pop)
这是输出:
b'0 8.516\n1 17.100\n2 3.286\n3 9.597\n4 1.221\nName: area, dtype: float64'
于 2019-05-17T12:47:50.413 回答