3

为了解决一个问题,我需要所有向量之间的曼哈顿距离。我试过sklearn.metrics.pairwise_distances了,但是尺寸太大了,所以为了减少内存占用,我曾经scipy.spatial.distance.pdist得到1D距离的压缩矩阵。

我使用了以下公式:

index = diagonalShape*(diagonalShape-1)/2 - (diagonalShape-i)*(diagonalShape-i-1)/2 + j - i - 1

计算1D矩阵的索引,得到 的距离值ij

我观察到,对于许多条目,距离的形式scipysklearn. 当两个图书馆用于计算城市街区距离的公式相同时,为什么会这样?

4

0 回答 0