我正在寻找一种解决方案来使用类似most_similar()
fromGensim
但使用Spacy
. 我想在使用 NLP 的句子列表中找到最相似的句子。
我尝试在循环中一一使用similarity()
(Spacy
例如https://spacy.io/api/doc#similarity),但这需要很长时间。
更深入:
我想把所有这些句子放在一个图中(像这样)来找到句子簇。
任何的想法 ?
我正在寻找一种解决方案来使用类似most_similar()
fromGensim
但使用Spacy
. 我想在使用 NLP 的句子列表中找到最相似的句子。
我尝试在循环中一一使用similarity()
(Spacy
例如https://spacy.io/api/doc#similarity),但这需要很长时间。
更深入:
我想把所有这些句子放在一个图中(像这样)来找到句子簇。
任何的想法 ?
这是一个简单的内置解决方案,您可以使用:
import spacy
nlp = spacy.load("en_core_web_lg")
text = (
"Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity."
" These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature."
" The term semantic similarity is often confused with semantic relatedness."
" Semantic relatedness includes any relation between two terms, while semantic similarity only includes 'is a' relations."
" My favorite fruit is apples."
)
doc = nlp(text)
max_similarity = 0.0
most_similar = None, None
for i, sent in enumerate(doc.sents):
for j, other in enumerate(doc.sents):
if j <= i:
continue
similarity = sent.similarity(other)
if similarity > max_similarity:
max_similarity = similarity
most_similar = sent, other
print("Most similar sentences are:")
print(f"-> '{most_similar[0]}'")
print("and")
print(f"-> '{most_similar[1]}'")
print(f"with a similarity of {max_similarity}")
(来自维基百科的文字)
它将产生以下输出:
Most similar sentences are:
-> 'Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity.'
and
-> 'These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature.'
with a similarity of 0.9583859443664551
请注意spacy.io中的以下信息:
为了使它们紧凑和快速,spaCy 的小型管道包(所有以 sm 结尾的包)不附带词向量,并且只包含上下文相关的张量。这意味着您仍然可以使用similarity() 方法来比较文档、跨度和标记——但结果不会那么好,并且单个标记不会分配任何向量。所以为了使用真实的词向量,你需要下载一个更大的管道包:
- python -m spacy download en_core_web_sm + python -m spacy download en_core_web_lg
另请参阅Spacy 与 Word2Vec中的文档相似度,以获取有关如何提高相似度分数的建议。