Basically, I have a nonlinear constrained problem using the SLSQP solver in scipy.optimize.minimize. Unfortunately, the problem (same file, same code) is returning different results on different computers (one Windows, one Linux). The scipy version is the same (1.2.1). Here is my code:
import numpy as np
from scipy.optimize import minimize
class OptimalAcc():
def __init__(self, v0, tg, tr, D0, sgr, l, t0, a0, b0,
rho_t=0.5, rho_u=0.5, vM=15, vm=2.78, aM=2.5, am=-2.9):
# Problem constants
self.v0 = v0
self.D0 = D0
self.sgr = sgr
self.l = l
self.T = tg + tr
self.D = tg / self.T
self.t0 = t0
self.a0 = a0
self.b0 = b0
self.rho_t = rho_t
self.rho_u = rho_u
self.vM = vM
self.vm = vm
self.aM = aM
self.am = am
def cost_fn(self, x):
# Acceleration profile variables
t = x[:1]
a = x[1:2]
b = x[2:3]
# Objective function
f = self.rho_t*x[:1]+self.rho_u*(a**2*t**3/3 +
a*b*t**2 +
b**2*t)
return f
def solve(self):
# Inequality constraints
ineq = ({'type':'ineq',
'fun':lambda x: np.array([self.aM - x[2],
x[2]-self.am,
x[0],
self.vM - (self.v0 + x[2]*x[0] + 0.5*x[1]*x[0]**2),
self.v0 + x[2]*x[0] + 0.5*x[1]*x[0]**2 - self.vm,
np.sin(np.pi*self.D - np.pi/2)-
np.sin(2*np.pi*(x[0] -((self.D0*self.T)/abs(self.sgr-2)))/self.T + 3*np.pi/2 - np.pi*self.D)])})
# Equality constraints
eq = ({'type':'eq',
'fun':lambda x: np.array([x[1]*x[0] + x[2],
self.v0*x[0] + 0.5*x[2]*x[0]**2 + x[1]*x[0]**3/6 - self.l])})
# Starting points
x0 = np.array([self.t0, self.a0, self.b0])
# Solve optimization problem
res = minimize(self.cost_fn,
x0=x0,
constraints=[ineq,eq],
options={'disp': True})
return res
if __name__== "__main__":
v0 = 1
tg = 20
tr = 20
D0 = 1
sgr = 1
l = 70
t0 = 10
a0 = -0.1
b0 = 1.5
# Create instance of optimization problem class
obj = OptimalAcc(v0, tg, tr, D0, sgr, l, t0, a0, b0)
# Solve problem and return optimal profile
u_t = obj.solve().x
print('x_1:',u_t[0])
print('x_2:',u_t[1])
print('x_3:',u_t[2])
The Windows machine yields:
Optimization terminated successfully. (Exit mode 0)
Current function value: 8.696191258640086
Iterations: 7
Function evaluations: 35
Gradient evaluations: 7
x_1: 13.508645429307041
x_2: -0.06874922875473621
x_3: 0.9287089606820067
I believe these results are locally optimal and I can verify the same output with fmincon in MATLAB.
However, the Linux machine yields:
Positive directional derivative for linesearch (Exit mode 8)
Current function value: 14.4116342889
Iterations: 17
Function evaluations: 147
Gradient evaluations: 13
x_1: 7.65875894797259
x_2: -0.241800477348664
x_3: 2.5000000000000053
Clearly, the optimizer is getting stuck in the Linux computer. What could be causing this? My only guess is that there's some precision within numpy that's throwing off the numbers.