我想用 Bert训练一个21 类的文本分类模型。但是我的训练数据很少,所以我下载了一个类似的数据集,其中包含5 个类别和 200 万个样本。t 并使用 bert 提供的未加壳预训练模型微调下载的数据。并获得了大约 98% 的验证准确率。现在,我想将此模型用作我的小型自定义数据的预训练模型。但是我收到shape mismatch with tensor output_bias from checkpoint reader
错误,因为检查点模型有 5 个类,而我的自定义数据有 21 个类。
NFO:tensorflow:Calling model_fn.
INFO:tensorflow:Running train on CPU
INFO:tensorflow:*** Features ***
INFO:tensorflow: name = input_ids, shape = (32, 128)
INFO:tensorflow: name = input_mask, shape = (32, 128)
INFO:tensorflow: name = is_real_example, shape = (32,)
INFO:tensorflow: name = label_ids, shape = (32, 21)
INFO:tensorflow: name = segment_ids, shape = (32, 128)
Tensor("IteratorGetNext:3", shape=(32, 21), dtype=int32)
WARNING:tensorflow:From /home/user/Spine_NLP/bert/modeling.py:358: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
WARNING:tensorflow:From /home/user/Spine_NLP/bert/modeling.py:671: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.dense instead.
INFO:tensorflow:num_labels:21;logits:Tensor("loss/BiasAdd:0", shape=(32, 21), dtype=float32);labels:Tensor("loss/Cast:0", shape=(32, 21), dtype=float32)
INFO:tensorflow:Error recorded from training_loop: Shape of variable output_bias:0 ((21,)) doesn't match with shape of tensor output_bias ([5]) from checkpoint reader.