我们my_perm/2
基于same_length/2
、
list_permuted/2
、diff和定义mapadj/2
:
my_perm(Xs,Ys) :-
same_length(Xs,Ys),
mapadj(dif,Ys),
list_permuted(Xs,Ys).
通用元谓词 mapadj/2
可以这样定义:
:- meta_predicate mapadj(2,?), list_mapadj(?,2), list_prev_mapadj(?,?,2).
mapadj(P_2,Xs) :-
list_mapadj(Xs,P_2).
list_mapadj([],_).
list_mapadj([A|As],P_2) :-
list_prev_mapadj(As,A,P_2).
list_prev_mapadj([],_,_).
list_prev_mapadj([A1|As],A0,P_2) :-
call(P_2,A0,A1),
list_prev_mapadj(As,A1,P_2).
这是OP 给出的示例查询1,2 。
我们call_time/2
用于以毫秒为单位测量运行时间T_ms
。
?- call_time(my_perm([1,1,1,1,1,2,2,3,3,4,4,5,5],[1,2,1,5,1,3,1,4,1,2,3,5,4]),T_ms).
T_ms = 0.
我们需要多长时间才能找到前几个解决方案?
?- call_time(my_perm([1,2,1,5,1,3,1,4,1,2,3,5,4],Xs),T_ms).
T_ms = 0, Xs = [1,2,1,5,1,3,1,4,1,2,3,5,4]
; T_ms = 0, Xs = [1,2,1,5,1,3,1,4,1,2,3,4,5]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,2,5,3,4]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,2,4,3,5]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,2,5,4,3]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,2,4,5,3]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,3,2,5,4]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,3,2,4,5]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,5,2,3,4]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,4,2,3,5]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,5,2,4,3]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,4,2,5,3]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,3,5,2,4]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,3,4,2,5]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,5,3,2,4]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,4,3,2,5]
; T_ms = 30, Xs = [1,2,1,5,1,3,1,4,1,5,4,2,3]
; T_ms = 30, Xs = [1,2,1,5,1,3,1,4,1,4,5,2,3]
...
请注意,T_ms
它是单调增长的:它测量自首次调用给定目标以来所花费的时间。
枚举所有解决方案需要多长时间?
?- call_time(\+((my_perm([1,1,1,1,1,2,2,3,3,4,4,5,5],_),false)),T_ms).
T_ms = 4030.
有多少解决方案?
?- use_module(library(aggregate)),
aggregate(count,Xs,my_perm([1,2,1,5,1,3,1,4,1,2,3,5,4],Xs),N).
N = 197664.
脚注 1:使用 SICStus Prolog 版本 4.3.2 (x86_64-linux-glibc2.12)。
脚注 2:为了便于阅读,对 Prolog 处理器给出的答案序列进行了调整。