我有一个data.frame
列“a”和“b”。我想添加名为“高”和“低”的列,其中包含列 a 和 b 中的最高和最低。
有没有办法在不循环数据帧中的行的情况下做到这一点?
编辑:这是针对 OHLC 数据的,因此高低列应包含同一行上 a 和 b 之间的最高和最低元素,而不是在整个列中。对不起,如果这措辞不好。
我有一个data.frame
列“a”和“b”。我想添加名为“高”和“低”的列,其中包含列 a 和 b 中的最高和最低。
有没有办法在不循环数据帧中的行的情况下做到这一点?
编辑:这是针对 OHLC 数据的,因此高低列应包含同一行上 a 和 b 之间的最高和最低元素,而不是在整个列中。对不起,如果这措辞不好。
听起来您正在寻找pmax
和pmin
(“平行”最大/最小):
Extremes package:base R Documentation
Maxima and Minima
Description:
Returns the (parallel) maxima and minima of the input values.
Usage:
max(..., na.rm = FALSE)
min(..., na.rm = FALSE)
pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)
pmax.int(..., na.rm = FALSE)
pmin.int(..., na.rm = FALSE)
Arguments:
...: numeric or character arguments (see Note).
na.rm: a logical indicating whether missing values should be
removed.
Details:
‘pmax’ and ‘pmin’ take one or more vectors (or matrices) as
arguments and return a single vector giving the ‘parallel’ maxima
(or minima) of the vectors. The first element of the result is
the maximum (minimum) of the first elements of all the arguments,
the second element of the result is the maximum (minimum) of the
second elements of all the arguments and so on. Shorter inputs
are recycled if necessary. ‘attributes’ (such as ‘names’ or
‘dim’) are transferred from the first argument (if applicable).
这是我使用Rcpp
. 我pmin
与我的版本相比,我的版本大约快了 3 倍。
library(Rcpp)
cppFunction("
NumericVector min_vec(NumericVector vec1, NumericVector vec2) {
int n = vec1.size();
if(n != vec2.size()) return 0;
else {
NumericVector out(n);
for(int i = 0; i < n; i++) {
out[i] = std::min(vec1[i], vec2[i]);
}
return out;
}
}
")
x1 <- rnorm(100000)
y1 <- rnorm(100000)
microbenchmark::microbenchmark(min_vec(x1, y1))
microbenchmark::microbenchmark(pmin(x1, y1))
x2 <- rnorm(500000)
y2 <- rnorm(500000)
microbenchmark::microbenchmark(min_vec(x2, y2))
microbenchmark::microbenchmark(pmin(x2, y2))
100,000 个元素的microbenchmark
函数输出为:
> microbenchmark::microbenchmark(min_vec(x1, y1))
Unit: microseconds
expr min lq mean median uq
min_vec(x1, y1) 215.731 222.3705 230.7018 224.484 228.1115
max neval
284.631 100
> microbenchmark::microbenchmark(pmin(x1, y1))
Unit: microseconds
expr min lq mean median uq max
pmin(x1, y1) 891.486 904.7365 943.5884 922.899 954.873 1098.259
neval
100
对于 500,000 个元素:
> microbenchmark::microbenchmark(min_vec(x2, y2))
Unit: milliseconds
expr min lq mean median uq
min_vec(x2, y2) 1.493136 2.008122 2.109541 2.140318 2.300022
max neval
2.97674 100
> microbenchmark::microbenchmark(pmin(x2, y2))
Unit: milliseconds
expr min lq mean median uq
pmin(x2, y2) 4.652925 5.146819 5.286951 5.264451 5.445638
max neval
6.639985 100
所以你可以看到Rcpp
版本更快。
您可以通过在函数中添加一些错误检查来使其变得更好,例如:检查两个向量的长度是否相同,或者它们是否具有可比性(不是字符与数字,或布尔与数字)。
如果您的 data.frame 名称是 dat。
dat$pmin <- do.call(pmin,dat[c("a","b")])
dat$pmax <- do.call(pmax,dat[c("a","b")])
另一种可能的解决方案:
set.seed(21)
Data <- data.frame(a=runif(10),b=runif(10))
Data$low <- apply(Data[,c("a","b")], 1, min)
Data$high <- apply(Data[,c("a","b")], 1, max)