2

我很好奇 TensorFlow 对象检测 API 中调整大小和扩充的顺序。例如,我正在使用配置文件ssd_mobilenet_v2_oid_v4.config。这使用fixed_shape_resizerssd_random_crop。那么这两个模块之间的交互是什么?

是否ssd_random_crop采取中定义的大小作物fixed_shape_resizer?如果先调整大小,那么调整大小后的作物大小是多少?而且我认为它们都需要具有相同的确切尺寸才能创建适当的批次?

4

1 回答 1

1

数据扩充发生在调整大小之前。所有预处理步骤都transform_input_data在文件inputs.py中的函数中指定,该文件包含类似 的函数,这些函数create_train_input_fn将在训练、评估create_eval_input_fncreate_predict_input_fn预测期间将输入图像张量提供给模型。在create_train_input_fn中,使用了以下变换函数。

def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
                         retain_original_image=False,
                         use_multiclass_scores=False,
                         use_bfloat16=False):
  """A single function that is responsible for all input data transformations.
  Data transformation functions are applied in the following order.
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
  4. image_resizer_fn: applied on original image and instance mask tensor in
     tensor_dict.
  5. one_hot_encoding: applied to classes tensor in tensor_dict.
  6. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
     same they can be merged into a single box with an associated k-hot class
     label.
  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.
    use_multiclass_scores: whether to use multiclass scores as
      class targets instead of one-hot encoding of `groundtruth_classes`.
    use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """

在第 2 步(如果有的话)执行数据扩充,并在第 4 步执行调整大小。

于 2019-04-22T21:41:58.803 回答