因此,我试图将一个函数的两个实现与假设进行比较,以确定它们是否以相同的方式工作于我自己可能不会想到的大量不同输入。
我尝试使用numpy.testing.assert_allclose
来比较输出,但假设只是反复超越它。我越是扩大可接受的容差,Hypothesis 对它抛出的值就越大,直到它失败,即使输出相似到足以被认为是相同的。
E Not equal to tolerance rtol=0.1, atol=0.001
...
Falsifying example: test_resample_1d_consistency(a=array([7.696582e+12, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00], dtype=float32), num=11)
E Not equal to tolerance rtol=0.1, atol=0.01
...
Falsifying example: test_resample_1d_consistency(a=array([7.366831e+13, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00], dtype=float32), num=11)
E Not equal to tolerance rtol=1000, atol=1000
...
Falsifying example: test_resample_1d_consistency(a=array([8.360933e+18, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00], dtype=float32), num=186)
等等
所以我想我需要一个不同的“足够好”的相似性测试,或者我需要以某种方式限制输入值范围?但我不确定如何以一种不会错过真正错误答案的方式来做到这一点。有什么建议吗?