我正在尝试将 sigmoid 函数拟合到我拥有的一些数据中,但我不断得到:ValueError: Unable to determine number of fit parameters.
我的数据如下所示:
我的代码是:
from scipy.optimize import curve_fit
def sigmoid(x):
return (1/(1+np.exp(-x)))
popt, pcov = curve_fit(sigmoid, xdata, ydata, method='dogbox')
然后我得到:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-78540a3a23df> in <module>
2 return (1/(1+np.exp(-x)))
3
----> 4 popt, pcov = curve_fit(sigmoid, xdata, ydata, method='dogbox')
~\Anaconda3\lib\site-packages\scipy\optimize\minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
685 args, varargs, varkw, defaults = _getargspec(f)
686 if len(args) < 2:
--> 687 raise ValueError("Unable to determine number of fit parameters.")
688 n = len(args) - 1
689 else:
ValueError: Unable to determine number of fit parameters.
我不确定为什么这不起作用,这似乎是一个微不足道的动作-> 将曲线拟合到某个点。所需的曲线如下所示:
对不起图形..我是在 PowerPoint 中完成的...
如何找到最佳的 sigmoid(“S”形)曲线?
更新
感谢@Brenlla,我将代码更改为:
def sigmoid(k,x,x0):
return (1 / (1 + np.exp(-k*(x-x0))))
popt, pcov = curve_fit(sigmoid, xdata, ydata, method='dogbox')
现在我没有收到错误,但曲线并不如预期:
x = np.linspace(0, 1600, 1000)
y = sigmoid(x, *popt)
plt.plot(xdata, ydata, 'o', label='data')
plt.plot(x,y, label='fit')
plt.ylim(0, 1.3)
plt.legend(loc='best')
结果是:
我该如何改进它以便更好地适应数据?
更新2
现在的代码是:
def sigmoid(x, L,x0, k, b):
y = L / (1 + np.exp(-k*(x-x0)))+b
但是结果还是...