这是我的尝试。原则上你总是可以测试线段相交,但如果你想保存浮点运算,在某些情况下你可以走捷径。AABB 将平面划分为九个区域(左上、上、右上、左、内、右、左下、下和右下)。如果您只查看三角形点所在的区域,您可能能够确定必须或不能发生相交。但是,有些情况不能在此基础上决定,必须退回到几何交集。这是我的代码,我认为是正确的(例如,所有基于区域的测试都定义明确),尽管我没有彻底测试。它相当长,但大部分是按位运算,所以它实际上应该很快。入口点是函数intersects
,main函数中有一个例子。
#include <math.h>
#include <stdio.h>
#define EPSILON 1e-6
typedef struct AABB {
float x0, y0, x1, y1;
} AABB;
typedef struct Point {
float x, y, z;
} Point;
typedef struct Triangle {
Point p1, p2, p3;
} Triangle;
// Naming assumes (0, 0) is top-left corner
typedef enum Region {
TOP_LEFT = 1 << 0,
TOP = 1 << 1,
TOP_RIGHT = 1 << 2,
LEFT = 1 << 3,
INSIDE = 1 << 4,
RIGHT = 1 << 5,
BOTTOM_LEFT = 1 << 6,
BOTTOM = 1 << 7,
BOTTOM_RIGHT = 1 << 8
} Region;
// Find the region in which a point is with respect to the AABB
Region aabb_region(const AABB* aabb, const Point* point) {
if (point->x < aabb->x0) {
if (point->y < aabb->y0) {
return TOP_LEFT;
} else if (point->y > aabb->y1) {
return BOTTOM_LEFT;
} else {
return LEFT;
}
} else if (point->x > aabb->x1) {
if (point->y < aabb->y0) {
return TOP_RIGHT;
} else if (point->y > aabb->y1) {
return BOTTOM_RIGHT;
} else {
return RIGHT;
}
} else {
if (point->y < aabb->y0) {
return TOP;
} else if (point->y > aabb->y1) {
return BOTTOM;
} else {
return INSIDE;
}
}
}
// 1: There is intersection
// 0: There may or may not be intersection
int regions_intersect_2(Region r1, Region r2) {
if ((((r1 | r2) & INSIDE) != 0) ||
((r1 | r2) == (LEFT | RIGHT)) ||
((r1 | r2) == (TOP | BOTTOM))) {
return 1;
} else {
return 0;
}
}
// 1: There is intersection
// 0: There may or may not be intersection
// -1: There is no intersection
// Does not check cases already covered by regions_intersect_2
int regions_intersect_3(Region r1, Region r2, Region r3) {
Region r23 = r2 | r3;
switch (r1) {
case TOP_LEFT:
if (r23 == (BOTTOM | RIGHT) ||
r23 == (BOTTOM | TOP_RIGHT) ||
r23 == (RIGHT | BOTTOM_LEFT)) {
return 1;
} else if ((r23 & (TOP_LEFT | LEFT | BOTTOM_LEFT)) == r23 ||
(r23 & (TOP_LEFT | TOP | TOP_RIGHT)) == r23) {
return -1;
}
case TOP:
if (r23 == (LEFT | BOTTOM_RIGHT) ||
r23 == (RIGHT | BOTTOM_LEFT)) {
return 1;
} else if ((r23 & (TOP_LEFT | TOP | TOP_RIGHT)) == r23) {
return -1;
}
case TOP_RIGHT:
if (r23 == (BOTTOM | LEFT) ||
r23 == (BOTTOM | TOP_LEFT) ||
r23 == (LEFT | BOTTOM_RIGHT)) {
return 1;
} else if ((r23 & (TOP_RIGHT | RIGHT | BOTTOM_RIGHT)) == r23 ||
(r23 & (TOP_RIGHT | TOP | TOP_LEFT)) == r23) {
return -1;
}
case LEFT:
if (r23 == (TOP | BOTTOM_RIGHT) ||
r23 == (BOTTOM | TOP_RIGHT)) {
return 1;
} else if ((r23 & (TOP_LEFT | LEFT | BOTTOM_LEFT)) == r23) {
return -1;
}
case RIGHT:
if (r23 == (TOP | BOTTOM_LEFT) ||
r23 == (BOTTOM | TOP_LEFT)) {
return 1;
} else if ((r23 & (TOP_RIGHT | RIGHT | BOTTOM_RIGHT)) == r23) {
return -1;
}
case BOTTOM_LEFT:
if (r23 == (TOP | RIGHT) ||
r23 == (TOP | BOTTOM_RIGHT) ||
r23 == (RIGHT | TOP_LEFT)) {
return 1;
} else if ((r23 & (BOTTOM_LEFT | LEFT | TOP_LEFT)) == r23 ||
(r23 & (BOTTOM_LEFT | BOTTOM | BOTTOM_RIGHT)) == r23) {
return -1;
}
case BOTTOM:
if (r23 == (LEFT | TOP_RIGHT) ||
r23 == (RIGHT | TOP_LEFT)) {
return 1;
} else if ((r23 & (BOTTOM_LEFT | BOTTOM | BOTTOM_RIGHT)) == r23) {
return -1;
}
case BOTTOM_RIGHT:
if (r23 == (TOP | LEFT) ||
r23 == (TOP | BOTTOM_LEFT) ||
r23 == (LEFT | TOP_RIGHT)) {
return 1;
} else if ((r23 & (BOTTOM_RIGHT | RIGHT | TOP_RIGHT)) == r23 ||
(r23 & (BOTTOM_RIGHT | BOTTOM | BOTTOM_LEFT)) == r23) {
return -1;
}
default:
return 0;
}
return 0;
}
// Check if a segment intersects with the AABB
// Does not check cases already covered by regions_intersect_2 or regions_intersect_3
int segment_intersects(const AABB* aabb, const Point* p1, const Point* p2, Region r1, Region r2) {
// Skip if intersection is impossible
Region r12 = r1 | r2;
if ((r12 & (TOP_LEFT | TOP | TOP_RIGHT)) == r12 ||
(r12 & (BOTTOM_LEFT | BOTTOM | BOTTOM_RIGHT)) == r12 ||
(r12 & (TOP_LEFT | LEFT | BOTTOM_LEFT)) == r12 ||
(r12 & (TOP_RIGHT | RIGHT | BOTTOM_RIGHT)) == r12) {
return 0;
}
float dx = p2->x - p1->x;
float dy = p2->y - p1->y;
if (fabsf(dx) < EPSILON || fabs(dy) < EPSILON) {
// Vertical or horizontal line (or zero-sized vector)
// If there were intersection we would have already picked it up
return 0;
}
float t = (aabb->x0 - p1->x) / dx;
if (t >= 0.f && t <= 1.f) {
return 1;
}
t = (aabb->x1 - p1->x) / dx;
if (t >= 0.f && t <= 1.f) {
return 1;
}
t = (aabb->y0 - p1->y) / dy;
if (t >= 0.f && t <= 1.f) {
return 1;
}
t = (aabb->y1 - p1->y) / dy;
if (t >= 0.f && t <= 1.f) {
return 1;
}
return 0;
}
int intersects(const AABB* aabb, const Triangle* triangle) {
// Find plane regions for each point
Region r1 = aabb_region(aabb, &triangle->p1);
Region r2 = aabb_region(aabb, &triangle->p2);
Region r3 = aabb_region(aabb, &triangle->p3);
// Check if any pair of regions implies intersection
if (regions_intersect_2(r1, r2) ||
regions_intersect_2(r1, r3) ||
regions_intersect_2(r2, r3)) {
return 1;
}
// Check if the three regions imply or forbid intersection
switch (regions_intersect_3(r1, r2, r3)) {
case 1:
return 1;
case -1:
return 0;
}
// Check segment intersections
if (segment_intersects(aabb, &triangle->p1, &triangle->p2, r1, r2)) {
return 1;
} else if (segment_intersects(aabb, &triangle->p1, &triangle->p3, r1, r3)) {
return 1;
} else if (segment_intersects(aabb, &triangle->p2, &triangle->p3, r2, r3)) {
return 1;
}
return 0;
}
int main(int argc, char* argv[]) {
AABB aabb = {
/* x0 = */ 2.f,
/* y0 = */ 1.f,
/* x1 = */ 5.f,
/* y1 = */ 6.f };
Triangle triangle = {
{1.f, 0.f}, {2.f, 2.f}, {2.f, -3.f}
};
int inter = intersects(&aabb, &triangle);
printf("Intersects: %s.\n", inter ? "yes" : "no");
return 0;
}
输出:
Intersects: yes.
在 Rextester 中查看