我是 keras 的新手,现在已经学习了大约 3 周。如果我的问题听起来有点愚蠢,我很抱歉。
我目前正在做 512x512 的语义医学图像分割。我从这个链接https://github.com/zhixuhao/unet使用 UNet 。基本上,我想从图像中分割出大脑(所以两类分割,背景与前景)
我对网络进行了一些修改,得到了一些我很满意的结果。但是我认为我可以通过对前景施加更多的权重来改善分割结果,因为大脑的像素数量远小于背景像素的数量。在某些情况下,大脑不会出现在图像中,尤其是位于底部切片中的大脑。
https://github.com/zhixuhao/unet不知道需要修改哪部分代码
如果有人可以帮助我,我将不胜感激。提前非常感谢!
import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
def unet(pretrained_weights=None, input_size=(256, 256, 1)):
inputs = Input(input_size)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = BatchNormalization()(conv1)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
conv1 = BatchNormalization()(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = BatchNormalization()(conv2)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = BatchNormalization()(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = BatchNormalization()(conv3)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
conv3 = BatchNormalization()(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = BatchNormalization()(conv4)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = BatchNormalization()(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = BatchNormalization()(conv5)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
conv5 = BatchNormalization()(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = BatchNormalization()(conv6)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
conv6 = BatchNormalization()(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = BatchNormalization()(conv7)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
conv7 = BatchNormalization()(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = BatchNormalization()(conv8)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
conv8 = BatchNormalization()(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = BatchNormalization()(conv9)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = BatchNormalization()(conv9)
conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = BatchNormalization()(conv9)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
# model.summary()
if (pretrained_weights):
model.load_weights(pretrained_weights)
return model
这是main.py
from model2 import *
from data2 import *
from keras.models import load_model
class_weight= {0:0.10, 1:0.90}
myGene = trainGenerator(2,'data/brainTIF/trainNew','image','label',save_to_dir = None)
model = unet()
model_checkpoint = ModelCheckpoint('unet_brainTest_e10_s5.hdf5',
monitor='loss')
model.fit_generator(myGene,steps_per_epoch=5,epochs=10,callbacks = [model_checkpoint])
testGene = testGenerator("data/brainTIF/test3")
results = model.predict_generator(testGene,18,verbose=1)
saveResult("data/brainTIF/test_results3",results)