0

[FFMPEG] 尝试访问 Ebur128Context->integrated_loudness 但不成功

我正在尝试在音频文件上运行 ebur128Filter 。类似于做[ http://ffmpeg.org/doxygen/2.6/f__ebur128_8c_source.html#l00135]

ffmpeg -i sample.wav -filter_complex ebur128=peak=true -f null -

结果是:

[Parsed_ebur128_0 @ 0x7f9d38403ec0] Summary:

Integrated loudness:
I: -15.5 LUFS
Threshold: -25.6 LUFS

Loudness range:
LRA: 1.5 LU
Threshold: -35.5 LUFS
LRA low: -16.3 LUFS
LRA high: -14.8 LUFS

True peak:
Peak: -0.4 dBFS 

/*
 * Copyright (c) 2010 Nicolas George
 * Copyright (c) 2011 Stefano Sabatini
 * Copyright (c) 2012 Clément Bœsch
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/**
 * @file
 * API example for audio decoding and filtering
 * @example filtering_audio.c
 */

#include <unistd.h>

#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libavfilter/buffersink.h>
#include <libavfilter/buffersrc.h>
#include <libavutil/opt.h>

#define MAX_CHANNELS 63



static const char *filter_descr = "ebur128=peak=true";

static AVFormatContext *fmt_ctx;
static AVCodecContext *dec_ctx;
AVFilterContext *buffersink_ctx;
AVFilterContext *buffersrc_ctx;
AVFilterGraph *filter_graph;
static int audio_stream_index = -1;

struct rect { int x, y, w, h; };


struct hist_entry {
    int count;                      ///< how many times the corresponding value occurred
    double energy;                  ///< E = 10^((L + 0.691) / 10)
    double loudness;                ///< L = -0.691 + 10 * log10(E)
};


struct integrator {
    double *cache[MAX_CHANNELS];    ///< window of filtered samples (N ms)
    int cache_pos;                  ///< focus on the last added bin in the cache array
    double sum[MAX_CHANNELS];       ///< sum of the last N ms filtered samples (cache content)
    int filled;                     ///< 1 if the cache is completely filled, 0 otherwise
    double rel_threshold;           ///< relative threshold
    double sum_kept_powers;         ///< sum of the powers (weighted sums) above absolute threshold
    int nb_kept_powers;             ///< number of sum above absolute threshold
    struct hist_entry *histogram;   ///< histogram of the powers, used to compute LRA and I
};

typedef struct EBUR128Context {
    const AVClass *class;           ///< AVClass context for log and options purpose

    /* peak metering */
    int peak_mode;                  ///< enabled peak modes
    double *true_peaks;             ///< true peaks per channel
    double *sample_peaks;           ///< sample peaks per channel
    double *true_peaks_per_frame;   ///< true peaks in a frame per channel
#if CONFIG_SWRESAMPLE
    SwrContext *swr_ctx;            ///< over-sampling context for true peak metering
    double *swr_buf;                ///< resampled audio data for true peak metering
    int swr_linesize;
#endif

    /* video  */
    int do_video;                   ///< 1 if video output enabled, 0 otherwise
    int w, h;                       ///< size of the video output
    struct rect text;               ///< rectangle for the LU legend on the left
    struct rect graph;              ///< rectangle for the main graph in the center
    struct rect gauge;              ///< rectangle for the gauge on the right
    AVFrame *outpicref;             ///< output picture reference, updated regularly
    int meter;                      ///< select a EBU mode between +9 and +18
    int scale_range;                ///< the range of LU values according to the meter
    int y_zero_lu;                  ///< the y value (pixel position) for 0 LU
    int y_opt_max;                  ///< the y value (pixel position) for 1 LU
    int y_opt_min;                  ///< the y value (pixel position) for -1 LU
    int *y_line_ref;                ///< y reference values for drawing the LU lines in the graph and the gauge

    /* audio */
    int nb_channels;                ///< number of channels in the input
    double *ch_weighting;           ///< channel weighting mapping
    int sample_count;               ///< sample count used for refresh frequency, reset at refresh

    /* Filter caches.
     * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
    double x[MAX_CHANNELS * 3];     ///< 3 input samples cache for each channel
    double y[MAX_CHANNELS * 3];     ///< 3 pre-filter samples cache for each channel
    double z[MAX_CHANNELS * 3];     ///< 3 RLB-filter samples cache for each channel

#define I400_BINS  (48000 * 4 / 10)
#define I3000_BINS (48000 * 3)
    struct integrator i400;         ///< 400ms integrator, used for Momentary loudness  (M), and Integrated loudness (I)
    struct integrator i3000;        ///<    3s integrator, used for Short term loudness (S), and Loudness Range      (LRA)

    /* I and LRA specific */
    double integrated_loudness;     ///< integrated loudness in LUFS (I)
    double loudness_range;          ///< loudness range in LU (LRA)
    double lra_low, lra_high;       ///< low and high LRA values

    /* misc */
    int loglevel;                   ///< log level for frame logging
    int metadata;                   ///< whether or not to inject loudness results in frames
    int dual_mono;                  ///< whether or not to treat single channel input files as dual-mono
    double pan_law;                 ///< pan law value used to calculate dual-mono measurements
    int target;                     ///< target level in LUFS used to set relative zero LU in visualization
    int gauge_type;                 ///< whether gauge shows momentary or short
    int scale;                      ///< display scale type of statistics
} EBUR128Context;

void dump_ebur128_context(void *priv);

static int open_input_file(const char *filename)
{
    int ret;
    AVCodec *dec;

    if ((ret = avformat_open_input(&fmt_ctx, filename, NULL, NULL)) < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot open input file\n");
        return ret;
    }

    if ((ret = avformat_find_stream_info(fmt_ctx, NULL)) < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot find stream information\n");
        return ret;
    }

    /* select the audio stream */
    ret = av_find_best_stream(fmt_ctx, AVMEDIA_TYPE_AUDIO, -1, -1, &dec, 0);
    if (ret < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot find an audio stream in the input file\n");
        return ret;
    }
    audio_stream_index = ret;

    /* create decoding context */
    dec_ctx = avcodec_alloc_context3(dec);
    if (!dec_ctx)
        return AVERROR(ENOMEM);
    avcodec_parameters_to_context(dec_ctx, fmt_ctx->streams[audio_stream_index]->codecpar);

    /* init the audio decoder */
    if ((ret = avcodec_open2(dec_ctx, dec, NULL)) < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot open audio decoder\n");
        return ret;
    }

    return 0;
}

static int init_filters(const char *filters_descr)
{
    char args[512];
    int ret = 0;
    const AVFilter *abuffersrc  = avfilter_get_by_name("abuffer");
    const AVFilter *abuffersink = avfilter_get_by_name("abuffersink");
    AVFilterInOut *outputs = avfilter_inout_alloc();
    AVFilterInOut *inputs  = avfilter_inout_alloc();
    static const enum AVSampleFormat out_sample_fmts[] = { AV_SAMPLE_FMT_S16, -1 };
    static const int64_t out_channel_layouts[] = { AV_CH_LAYOUT_MONO, -1 };
    static const int out_sample_rates[] = { 8000, -1 };
    const AVFilterLink *outlink;
    AVRational time_base = fmt_ctx->streams[audio_stream_index]->time_base;

    filter_graph = avfilter_graph_alloc();
    if (!outputs || !inputs || !filter_graph) {
        ret = AVERROR(ENOMEM);
        goto end;
    }

    /* buffer audio source: the decoded frames from the decoder will be inserted here. */
    if (!dec_ctx->channel_layout)
        dec_ctx->channel_layout = av_get_default_channel_layout(dec_ctx->channels);
    snprintf(args, sizeof(args),
            "time_base=%d/%d:sample_rate=%d:sample_fmt=%s:channel_layout=0x%"PRIx64,
             time_base.num, time_base.den, dec_ctx->sample_rate,
             av_get_sample_fmt_name(dec_ctx->sample_fmt), dec_ctx->channel_layout);
    ret = avfilter_graph_create_filter(&buffersrc_ctx, abuffersrc, "in",
                                       args, NULL, filter_graph);
    if (ret < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot create audio buffer source\n");
        goto end;
    }

    /* buffer audio sink: to terminate the filter chain. */
    ret = avfilter_graph_create_filter(&buffersink_ctx, abuffersink, "out",
                                       NULL, NULL, filter_graph);
    if (ret < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot create audio buffer sink\n");
        goto end;
    }

    ret = av_opt_set_int_list(buffersink_ctx, "sample_fmts", out_sample_fmts, -1,
                              AV_OPT_SEARCH_CHILDREN);
    if (ret < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot set output sample format\n");
        goto end;
    }

    ret = av_opt_set_int_list(buffersink_ctx, "channel_layouts", out_channel_layouts, -1,
                              AV_OPT_SEARCH_CHILDREN);
    if (ret < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot set output channel layout\n");
        goto end;
    }

    ret = av_opt_set_int_list(buffersink_ctx, "sample_rates", out_sample_rates, -1,
                              AV_OPT_SEARCH_CHILDREN);
    if (ret < 0) {
        av_log(NULL, AV_LOG_ERROR, "Cannot set output sample rate\n");
        goto end;
    }

    /*
     * Set the endpoints for the filter graph. The filter_graph will
     * be linked to the graph described by filters_descr.
     */

    /*
     * The buffer source output must be connected to the input pad of
     * the first filter described by filters_descr; since the first
     * filter input label is not specified, it is set to "in" by
     * default.
     */
    outputs->name       = av_strdup("in");
    outputs->filter_ctx = buffersrc_ctx;
    outputs->pad_idx    = 0;
    outputs->next       = NULL;

    /*
     * The buffer sink input must be connected to the output pad of
     * the last filter described by filters_descr; since the last
     * filter output label is not specified, it is set to "out" by
     * default.
     */
    inputs->name       = av_strdup("out");
    inputs->filter_ctx = buffersink_ctx;
    inputs->pad_idx    = 0;
    inputs->next       = NULL;

    if ((ret = avfilter_graph_parse_ptr(filter_graph, filters_descr,
                                        &inputs, &outputs, NULL)) < 0)
        goto end;

    if ((ret = avfilter_graph_config(filter_graph, NULL)) < 0)
        goto end;

    /* Print summary of the sink buffer
     * Note: args buffer is reused to store channel layout string */
    outlink = buffersink_ctx->inputs[0];
    av_get_channel_layout_string(args, sizeof(args), -1, outlink->channel_layout);
    av_log(NULL, AV_LOG_INFO, "Output: srate:%dHz fmt:%s chlayout:%s\n",
           (int)outlink->sample_rate,
           (char *)av_x_if_null(av_get_sample_fmt_name(outlink->format), "?"),
           args);

end:
    avfilter_inout_free(&inputs);
    avfilter_inout_free(&outputs);

    return ret;
}

static void print_frame(const AVFrame *frame)
{
//    const int n = frame->nb_samples * av_get_channel_layout_nb_channels(frame->channel_layout);
//    const uint16_t *p     = (uint16_t*)frame->data[0];
//    const uint16_t *p_end = p + n;
//
//    while (p < p_end) {
//        fputc(*p    & 0xff, stdout);
//        fputc(*p>>8 & 0xff, stdout);
//        p++;
//    }
//    fflush(stdout);
}

int main(int argc, char **argv)
{
    av_log_set_level(AV_LOG_DEBUG);
    int ret;
    AVPacket packet;
    AVFrame *frame = av_frame_alloc();
    AVFrame *filt_frame = av_frame_alloc();

    if (!frame || !filt_frame) {
        perror("Could not allocate frame");
        exit(1);
    }


    if ((ret = open_input_file(argv[1])) < 0)
        goto end;
    if ((ret = init_filters(filter_descr)) < 0)
        goto end;

    /* read all packets */
    while (1) {
        if ((ret = av_read_frame(fmt_ctx, &packet)) < 0)
            break;

        if (packet.stream_index == audio_stream_index) {
            ret = avcodec_send_packet(dec_ctx, &packet);
            if (ret < 0) {
                av_log(NULL, AV_LOG_ERROR, "Error while sending a packet to the decoder\n");
                break;
            }

            while (ret >= 0) {
                ret = avcodec_receive_frame(dec_ctx, frame);
                if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
                    break;
                } else if (ret < 0) {
                    av_log(NULL, AV_LOG_ERROR, "Error while receiving a frame from the decoder\n");
                    goto end;
                }

                if (ret >= 0) {
                    /* push the audio data from decoded frame into the filtergraph */
                    if (av_buffersrc_add_frame_flags(buffersrc_ctx, frame, AV_BUFFERSRC_FLAG_KEEP_REF) < 0) {
                        av_log(NULL, AV_LOG_ERROR, "Error while feeding the audio filtergraph\n");
                        break;
                    }

                    /* pull filtered audio from the filtergraph */
                    while (1) {
                        ret = av_buffersink_get_frame(buffersink_ctx, filt_frame);
                        if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF)
                            break;
                        if (ret < 0)
                            goto end;
                        print_frame(filt_frame);
                        av_frame_unref(filt_frame);
                    }
                    av_frame_unref(frame);
                }
            }
        }
        av_packet_unref(&packet);
    }
    if(filter_graph->nb_filters){
    av_log(filter_graph, AV_LOG_INFO, "hello : %d \n",
                filter_graph->nb_filters);
    int i;
    for (int i = 0; i < filter_graph->nb_filters; i++){
        av_log(filter_graph, AV_LOG_INFO, "name : %s \n",
                        filter_graph->filters[i]->name);
    }
    }

    av_log(filter_graph, AV_LOG_INFO, "name : %s \n",
                            filter_graph->filters[2]->name);
    void* priv = filter_graph->filters[2]->priv;

    dump_ebur128_context(&priv);

end:


    avfilter_graph_free(&filter_graph);
    avcodec_free_context(&dec_ctx);
    avformat_close_input(&fmt_ctx);
    av_frame_free(&frame);
    av_frame_free(&filt_frame);

    if (ret < 0 && ret != AVERROR_EOF) {
        fprintf(stderr, "Error occurred: %s\n", av_err2str(ret));
        exit(1);
    }

    exit(0);
}

void dump_ebur128_context(void *priv){
    EBUR128Context *ebur128 = priv;

    av_log(ebur128, AV_LOG_INFO, "integrated_loudness : %5.1f \n",
                            ebur128->integrated_loudness);
    av_log(ebur128, AV_LOG_INFO, "lra_low : %5.1f \n",
                                ebur128->lra_low);
    av_log(ebur128, AV_LOG_INFO, "lra_high : %5.1f \n",
                                ebur128->lra_high);


}

program fails while accessing integrated loudness in dump_ebur128_context.

有人可以指导我,我应该如何在这里进行。

4

0 回答 0