Can CoreNLP determine whether a common noun (as opposed to a proper noun or proper name) refers to a person out-of-the-box? Or if I need to train a model for this task, how do I go about that?
First, I am not looking for coreference resolution, but rather a building block for it. Coreference by definition depends on the context, whereas I am trying to evaluate whether a word in isolation is a subset of "person" or "human". For example:
is_human('effort') # False
is_human('dog') # False
is_human('engineer') # True
My naive attempt to use Gensim's and spaCy's pre-trained word vectors failed to rank "engineer" above the other two words.
import gensim.downloader as api
word_vectors = api.load("glove-wiki-gigaword-100")
for word in ('effort', 'dog', 'engineer'):
print(word, word_vectors.similarity(word, 'person'))
# effort 0.42303842
# dog 0.46886832
# engineer 0.32456854
I found the following lists from CoreNLP promising.
dcoref.demonym // The path for a file that includes a list of demonyms
dcoref.animate // The list of animate/inanimate mentions (Ji and Lin, 2009)
dcoref.inanimate
dcoref.male // The list of male/neutral/female mentions (Bergsma and Lin, 2006)
dcoref.neutral // Neutral means a mention that is usually referred by 'it'
dcoref.female
dcoref.plural // The list of plural/singular mentions (Bergsma and Lin, 2006)
dcoref.singular
Would these work for my task? And if so, how would I access them from the Python wrapper? Thank you.