在布尔监督分类器上绘制学习曲线时sklearn.model_selection.learning_curve()
,默认显示加权 f1 分数。
但我想绘制特定班级的 f1 分数。在这种情况下,正面(又名:1)类。
在下面(来自sklearn.metrics.classification_report
)的上下文中,它的绘图avg / total
,但我想绘制类的指标1
。
阴谋
代码
...
estimator = classifier_class()
cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
train_sizes, train_scores, test_scores = learning_curve(estimator, X_recombined, y_recombined, cv=cv) # n_jobs=n_jobs, train_sizes=train_sizes
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes,
train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std,
alpha=0.1, color="r")
plt.fill_between(train_sizes,
test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std,
alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score")
plt.legend(loc="best")
这可能吗?