1

我正在尝试实现矩阵的伪逆计算 A*,以便为具有 C++ 维度的方形 nxn 矩阵 A 求解 Ax=b。A* 的算术公式是通过 SVD 分解。

因此,首先我计算 SVD(A)=USV^T,然后计算 A*=VS U^T,其中 S是反对角线 S,其中其非零元素 si 在 S* 中变为 1/si。最后我计算解决方案 x=A*b

但是我没有得到正确的结果。我将 LAPACKE 接口用于 c++ 和 cblas 用于矩阵乘法。这是我的代码:

double a[n * n] = {2, -1, 2,1};
double b[n]={3,4};
double u[n * n], s[n],vt[n * n];

int lda = n, ldu = n, ldvt = n;

int info = LAPACKE_dgesdd(LAPACK_COL_MAJOR, 'A', n, n, a, lda, s,
               u, ldu, vt, ldvt);




for (int i = 0; i < n; i++) {
        s[i] = 1.0 / s[i];       
}

const int a = 1;
const int c = 0;

double r1[n];
double r2[n];
double res[n];

//compute the  first multiplication s*u^T
cblas_dgemm( CblasColMajor,CblasNoTrans, CblasTrans, n, n, n, a, u, ldvt, s, ldu, c, r1, n);

//compute the second multiplication v^T^T=vs*u^T
cblas_dgemm( CblasColMajor,CblasTrans, CblasNoTrans, n, n, n, a, vt, ldvt, r1, ldu, c, r2, n);

//now that we have the pseudoinverse A* solve by multiplying with b.
cblas_dgemm( CblasColMajor,CblasNoTrans, CblasNoTrans, n, 1, n, a, r2, ldvt, b, ldu, c, res, n);

在第二个 cblas_dgemm 之后,预计在 r2 中有 A* 伪逆。但是,在与 matlab pinv 比较后,我没有得到相同的结果。如果我打印 r2 结果给出:

 0.25   0.50
 0.25   0.50

但应该是

0.25   -0.50
0.25   0.50
4

1 回答 1

0

的参数表示SLAPACKE_dgesdd()SVD 分解中矩阵奇异值。虽然它的长度为n,但它没有描述向量,因为它表示对角矩阵。事实上, Su^T 的结果是一个大小为 的矩阵n*n

cblas_dscal()可以在循环中应用该例程来计算涉及对角矩阵的矩阵乘积,尽管生成的 Su^t 仍然是转置的。看看在 fortran 中乘以对角矩阵的最佳方法是什么

以下代码可以通过g++ main.cpp -o main -llapacke -llapack -lgslcblas -lblas -lm -Wall(或-lcblas`...)编译

#include <iostream>
#include <string>
#include <fstream>  

#include <stdlib.h>
#include <stdio.h>
#include <math.h>



extern "C" { 
#include <lapacke.h>
#include <cblas.h>
}

int main(int argc, char *argv[])
{
const int n=2;

double a[n * n] = {2, -1, 2,1};
double b[n]={3,4};
double u[n * n], s[n],vt[n * n];

int lda = n, ldu = n, ldvt = n;

//computing the SVD
int info = LAPACKE_dgesdd(LAPACK_COL_MAJOR, 'A', n, n, a, lda, s,
               u, ldu, vt, ldvt);
if (info !=0){
std::cerr<<"Lapack error occured in dgesdd. error code :"<<info<<std::endl;
}


for (int i = 0; i < n; i++) {
        s[i] = 1.0 / s[i];       
}

const int aa = 1;
const int c = 0;

//double r1[n*n];
double r2[n*n];
double res[n];

//compute the  first multiplication s*u^T
// here : s is not a vector : it is a diagonal matrix. The ouput must be of size n*n
//cblas_dgemm( CblasColMajor,CblasNoTrans, CblasTrans, n, n, n, aa, u, ldvt, s, ldu, c, r1, n);
for (int i = 0; i < n; i++) {
cblas_dscal(n,s[i],&u[i*n],1);
}

//compute the second multiplication v^T^T=vs*u^T
cblas_dgemm( CblasColMajor,CblasTrans, CblasTrans, n, n, n, aa, vt, ldvt, u, ldu, c, r2, n);
//now, r2 is the pseudoinverse of a.
//now that we have the pseudoinverse A* solve by multiplying with b.
cblas_dgemm( CblasColMajor,CblasNoTrans, CblasNoTrans, n, 1, n, aa, r2, ldvt, b, ldu, c, res, n);


for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
    std::cout<<r2[i*n+j]<<" ";
}
}

std::cout<<std::endl;
}

它打印预期的结果:

0.25 0.25 -0.5 0.5 
于 2019-04-19T22:10:31.177 回答