If you want maximum generality, you can memoize a memoizing function.
memo :: (Num a, Enum a) => (a -> b) -> [b]
memo f = map f (enumFrom 0)
gwvals = fmap memo (memo gw)
fastgw :: Int -> Int -> Int
fastgw x y = gwvals !! x !! y
This technique will work with functions that have any number of arguments.
Edit: thanks to Philip K. for pointing out a bug in the original code. Originally memo
had a "Bounded" constraint instead of "Num" and began the enumeration at minBound
, which would only be valid for natural numbers.
Lists aren't a good data structure for memoizing, though, because they have linear lookup complexity. You might be better off with a Map or IntMap. Or look on Hackage.
Note that this particular code does rely on laziness, so if you wanted to switch to using a Map you would need to take a bounded amount of elements from the list, as in:
gwByMap :: Int -> Int -> Int -> Int -> Int
gwByMap maxX maxY x y = fromMaybe (gw x y) $ M.lookup (x,y) memomap
where
memomap = M.fromList $ concat [[((x',y'),z) | (y',z) <- zip [0..maxY] ys]
| (x',ys) <- zip [0..maxX] gwvals]
fastgw2 :: Int -> Int -> Int
fastgw2 = gwByMap 20 20
I think ghc may be stupid about sharing in this case, you may need to lift out the x
and y
parameters, like this:
gwByMap maxX maxY = \x y -> fromMaybe (gw x y) $ M.lookup (x,y) memomap