我有一些我正在尝试转换为 Python 的 SAS 编码。我在计算不对称数据的杰卡德距离时遇到了困难——在计算中应该忽略零。我确实在 jaccard 上找到了一些示例,但它们没有计算不对称距离。在我尝试重新发明轮子之前,只需检查一下图书馆是否有这个可用。如果有人能引导我朝着正确的方向前进,我将不胜感激。
我的测试数据集包含 5 个标题和 5 行
H0 H1 H2 H3 H4
A 1 1 1 1 0
B 1 0 1 1 0
C 1 1 1 1 0
D 0 0 1 1 1
E 1 1 0 1 0
以下是通过速记以及使用 SAS 计算的预期结果(距离):
. | A | B | C | D | E
A | 0 | 0.25| 0 | 0.6 | 0.25
B | 0.25| 0 | 0.25| 0.5 | 0.5
C | 0 | 0.25| 0 | 0.6 | 0.25
D | 0.6 | 0.5 | 0.6 | 0 | 0.8
E | 0.25| 0.5 | 0.25| 0.8 | 0
但是,在 python 中使用 jaccard,我得到如下结果:
. |A | B | C | D | E
A |1.00 | 0.43 | 0.61 | 0.55 | 0.46
B |0.43 | 1.00 | 0.52 | 0.56 | 0.49
C |0.61 | 0.52 | 1.00 | 0.48 | 0.53
D |0.55 | 0.56 | 0.48 | 1.00 | 0.49
E |0.46 | 0.49 | 0.53 | 0.49 | 1.00
下面是我实验的代码。我是 Python 新手,所以我可能会犯一个明显的错误。我在底部添加了 SAS 代码,以防有人需要参考:
蟒蛇代码:
np.random.seed(0)
df = pd.DataFrame(np.random.binomial(1, 0.5, size=(100, 5)),
columns=list('ABCDE'))
print(df.head())
jac_sim = 1 - pairwise_distances(df.T, metric = "jaccard")
jac_sim = pd.DataFrame(jac_sim, index=df.columns, columns=df.columns)
import itertools
sim_df = pd.DataFrame(np.ones((5, 5)), index=df.columns, columns=df.columns)
for col_pair in itertools.combinations(df.columns, 2):
sim_df.loc[col_pair] = sim_df.loc[tuple(reversed(col_pair))] =
jaccard_similarity_score(df[col_pair[0]], df[col_pair[1]])
print(sim_df)
SAS 代码:
proc import datafile = '/home/xxx/xxx.csv'
out = work.Binary2 replace
dbms = CSV;
GUESSINGROWS=MAX;
run;
proc sort;
by VAR1;
run;
title ’Data Clustering of BN’;
proc distance data=Binary2 method=djaccard absent=0 out=distjacc;
var anominal (r0--r4);
id VAR1;
run;