1

我正在尝试使用库pomegranate来近似 Beta 分布。但是,当我尝试从生成的数据中近似参数时,我得到了非常不同的参数。重现此类错误的代码如下

import numpy as np
from pomegranate import * 

X = np.random.beta(1, 5, size=10000).reshape(-1, 1) # sample from beta distribution with alpha = 1, beta = 5
print(BetaDistribution.from_samples(X).parameters) # approximate beta parameters
>>> [0.0, 10000.0] # error here

我不确定错误来自哪里。似乎测试文件test_distributions.py产生了正确的答案。如果有任何关于如何修复pomegranate或创建自定义模型的pomegranate建议将不胜感激。

注意我正在使用Python 3.6.8

4

1 回答 1

0

根据这个问题回答BetaDistribution当前库中提供的是 beta-binomial 分布而不是 beta 分布。这就是为什么该模型无法拟合 beta 分布样本的原因。

解决方法

BayesianOptimization我得到了使用库的解决方法。基本上,我尝试使用贝叶斯优化库从给定数据中最大化分布的对数似然。以下代码也可以很好地概括分布的混合。

from bayes_opt import BayesianOptimization

data = np.random.beta(1, 5, size=10000) # create data

def beta_loss(a, b):
    beta_loss = BetaDistribution(a, b).probability(data)
    return np.log(beta_loss).sum()

optimizer = BayesianOptimization(
    f=beta_loss, 
    pbounds={'a': (0.5, 5), 
             'b': (0.5, 20)}, 
    random_state=10
)
# optimize the parameters
optimizer.maximize(
    init_points=5, 
    n_iter=100
)

# plot approximated distribution vs. distribution of the data
x = np.arange(0, 1, 0.01)
plt.hist(data, density=True, bins=100, alpha=0.1)
a, b = [v for k, v in optimizer.max['params'].items()]
plt.plot(x, BetaDistribution(a, b).probability(x))
plt.show()

拟合分布

额外(用于混合分布)

在这里,我只是举例说明如何优化Beta分布和高斯分布的混合参数:

from bayes_opt import BayesianOptimization

# example data of beta/gaussian distribution
data = np.hstack((np.random.beta(1, 10, size=2000), 
                  np.random.randn(1000) * 0.2 + 0.6))
data = data[np.logical_and(data >= 0.0, data <= 1.0)]

def loss_bimodal(a, b, mu, sigma, w1):
    beta_loss = BetaDistribution(a, b).probability(data)
    norm_loss = NormalDistribution(mu, sigma).probability(data)
    return np.log(w1 * beta_loss + (1 - w1) * norm_loss).sum()

def pdf_bimodal(a, b, mu, sigma, w1, x=np.arange(0, 1, 0.01)):
    return w1 * BetaDistribution(a, b).probability(x) + \
        (1 - w1) * NormalDistribution(mu, sigma).probability(x)

optimizer = BayesianOptimization(
    f=loss_bimodal, 
    pbounds={'mu': (0., 1.), 
             'sigma': (0., 1.), 
             'a': (0.5, 5), 
             'b': (1, 25), 
             'w1': (0., 1.)},
    random_state=1
)
optimizer.maximize(
    init_points=5, 
    n_iter=100
)

使用优化的参数绘制分布如下:

a, b, mu, sigma, w1 = [v for k, v in optimizer.max['params'].items()]
x = np.arange(0, 1, 0.01)
plt.plot(x, pdf(a, b, mu, sigma, w1, x))
plt.hist(data, density=True, bins=100)
plt.show()

在此处输入图像描述

于 2019-04-02T18:37:00.020 回答