根据这个问题回答,BetaDistribution
当前库中提供的是 beta-binomial 分布而不是 beta 分布。这就是为什么该模型无法拟合 beta 分布样本的原因。
解决方法
BayesianOptimization
我得到了使用库的解决方法。基本上,我尝试使用贝叶斯优化库从给定数据中最大化分布的对数似然。以下代码也可以很好地概括分布的混合。
from bayes_opt import BayesianOptimization
data = np.random.beta(1, 5, size=10000) # create data
def beta_loss(a, b):
beta_loss = BetaDistribution(a, b).probability(data)
return np.log(beta_loss).sum()
optimizer = BayesianOptimization(
f=beta_loss,
pbounds={'a': (0.5, 5),
'b': (0.5, 20)},
random_state=10
)
# optimize the parameters
optimizer.maximize(
init_points=5,
n_iter=100
)
# plot approximated distribution vs. distribution of the data
x = np.arange(0, 1, 0.01)
plt.hist(data, density=True, bins=100, alpha=0.1)
a, b = [v for k, v in optimizer.max['params'].items()]
plt.plot(x, BetaDistribution(a, b).probability(x))
plt.show()
额外(用于混合分布)
在这里,我只是举例说明如何优化Beta分布和高斯分布的混合参数:
from bayes_opt import BayesianOptimization
# example data of beta/gaussian distribution
data = np.hstack((np.random.beta(1, 10, size=2000),
np.random.randn(1000) * 0.2 + 0.6))
data = data[np.logical_and(data >= 0.0, data <= 1.0)]
def loss_bimodal(a, b, mu, sigma, w1):
beta_loss = BetaDistribution(a, b).probability(data)
norm_loss = NormalDistribution(mu, sigma).probability(data)
return np.log(w1 * beta_loss + (1 - w1) * norm_loss).sum()
def pdf_bimodal(a, b, mu, sigma, w1, x=np.arange(0, 1, 0.01)):
return w1 * BetaDistribution(a, b).probability(x) + \
(1 - w1) * NormalDistribution(mu, sigma).probability(x)
optimizer = BayesianOptimization(
f=loss_bimodal,
pbounds={'mu': (0., 1.),
'sigma': (0., 1.),
'a': (0.5, 5),
'b': (1, 25),
'w1': (0., 1.)},
random_state=1
)
optimizer.maximize(
init_points=5,
n_iter=100
)
使用优化的参数绘制分布如下:
a, b, mu, sigma, w1 = [v for k, v in optimizer.max['params'].items()]
x = np.arange(0, 1, 0.01)
plt.plot(x, pdf(a, b, mu, sigma, w1, x))
plt.hist(data, density=True, bins=100)
plt.show()